Perfect matchings and $K_{1, p}$-restricted graphs
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 27-50
Voir la notice de l'article provenant de la source Math-Net.Ru
A graph is called $K_{1, p}$-restricted ($p \ge 3$) if for every vertex of the graph there are at least $p - 2$ edges between any $p$ of its neighbours. We establish sufficient conditions for the existence of a perfect matching in $K_{1, p}$-restricted graphs in terms of their connectivity and vertex degrees. These conditions imply, in particular, the classical Petersen's result: any $2$-edge-connected $3$-regular graph contains a perfect matching.
Keywords:
$K_{1, p}$-restricted graph, strongly $K_{1, p}$-restricted graph, perfect matching, factor-critical graph.
@article{DM_2020_32_1_a2,
author = {P. A. Irzhavski and Yu. L. Orlovich},
title = {Perfect matchings and $K_{1, p}$-restricted graphs},
journal = {Diskretnaya Matematika},
pages = {27--50},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a2/}
}
P. A. Irzhavski; Yu. L. Orlovich. Perfect matchings and $K_{1, p}$-restricted graphs. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 27-50. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a2/