Perfect matchings and $K_{1, p}$-restricted graphs
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 27-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph is called $K_{1, p}$-restricted ($p \ge 3$) if for every vertex of the graph there are at least $p - 2$ edges between any $p$ of its neighbours. We establish sufficient conditions for the existence of a perfect matching in $K_{1, p}$-restricted graphs in terms of their connectivity and vertex degrees. These conditions imply, in particular, the classical Petersen's result: any $2$-edge-connected $3$-regular graph contains a perfect matching.
Keywords: $K_{1, p}$-restricted graph, strongly $K_{1, p}$-restricted graph, perfect matching, factor-critical graph.
@article{DM_2020_32_1_a2,
     author = {P. A. Irzhavski and Yu. L. Orlovich},
     title = {Perfect matchings and $K_{1, p}$-restricted graphs},
     journal = {Diskretnaya Matematika},
     pages = {27--50},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a2/}
}
TY  - JOUR
AU  - P. A. Irzhavski
AU  - Yu. L. Orlovich
TI  - Perfect matchings and $K_{1, p}$-restricted graphs
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 27
EP  - 50
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_1_a2/
LA  - ru
ID  - DM_2020_32_1_a2
ER  - 
%0 Journal Article
%A P. A. Irzhavski
%A Yu. L. Orlovich
%T Perfect matchings and $K_{1, p}$-restricted graphs
%J Diskretnaya Matematika
%D 2020
%P 27-50
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_1_a2/
%G ru
%F DM_2020_32_1_a2
P. A. Irzhavski; Yu. L. Orlovich. Perfect matchings and $K_{1, p}$-restricted graphs. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 27-50. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a2/

[1] Lovas L., Plammer M., Prikladnye zadachi teorii grafov. Teoriya parosochetanii v matematike, fizike, khimii, per. s angl., Mir, Moskva, 1998, 653 pp.; Lovasz L., Plummer M., Matching theory Budapest, Elsevier, 1986, 543 pp. | MR

[2] Plummer M. D., “Graph factors and factorization: 1985–2003: A survey”, Discrete Math., 307 (2007), 791–821 | DOI | MR | Zbl

[3] Akiyama J., Kano M., Factors and factorizations of graphs. Proof techniques in factor theory, Lect. Notes Math., 2031, 2011, 353 pp. | DOI | MR | Zbl

[4] Yu Q. R., Liu G., Graph factors and matching extensions, Higher Education Press, Springer-Verlag, Beijing, 2009 | MR | Zbl

[5] Faudree R., Flandrin E., Ryjáček Z., “Claw-free graphs — a survey”, Discrete Math., 164 (1997), 87–147 | DOI | MR | Zbl

[6] Greenlaw R., Petreschi R., “Cubic graphs”, ACM Comput. Surveys, 27 (1995), 471–495 | DOI

[7] Li R., Schelp R. H., “Hamiltonicity of $\{K_{1, 4}, K_{1, 4} + e\}$-free graphs”, Discrete Math., 245 (2002), 195–202 | DOI | MR | Zbl

[8] Li R., “Hamiltonicity of $2$-connected $\{K_{1, 4}, K_{1, 4} + e\}$-free graphs”, Discrete Math., 287 (2004), 69–76 | DOI | MR | Zbl

[9] Wang J., Teng Y., “$K_{1,p}$-restricted graphs”, Adv. Math. (China), 35 (2006), 657–662 | MR

[10] Wang J., Li M., “Fully cycle extendability of $K_{1,4}$-restricted graphs”, Discrete Math., 309 (2009), 4011–4016 | DOI | MR | Zbl

[11] Irzhavskii P. A., Orlovich Yu. L., “Polnaya tsiklicheskaya rasshiryaemost lokalno svyaznykh $K_{1,4}$-ogranichennykh grafov”, Trudy Inst. mat., 20, no. 2, 2012, 36–50 | Zbl

[12] Ryjáček Z., Vrána P., Wang Sh., “Closure for $\{K_{1, 4}, K_{1, 4} + e\}$-free graphs”, J. Combin. Theory, Ser. B, 134 (2019), 239–263 | DOI | MR | Zbl

[13] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, Moskva, 1990, 384 pp. | MR

[14] Petersen J., “Die Theorie der regulären graphs”, Acta Math., 15 (1891), 193–220 | DOI | MR

[15] Bäbler F., “Über die Zerlegung regulärer Streckenkomplexe ungerader Ordnung”, Comment. Math. Helv., 10 (1938), 275–287 | DOI | MR

[16] Plesnik J., “Remarks on regular factors of regular graphs”, Czechosl. Math. J., 24 (1974), 292–300 | MR | Zbl

[17] Sumner D. P., “Graphs with $1$-factors”, Proc. Amer. Math. Soc., 42 (1974), 8–12 | MR | Zbl

[18] Sumner D. P., “$1$-factors and antifactor sets”, J. London Math. Soc., II Ser., 13 (1976), 351–359 | DOI | MR | Zbl

[19] Ryjáček Z., “Almost claw-free graphs”, J. Graph Theory, 18 (1994), 469–477 | DOI | MR | Zbl

[20] Ainouche A., “Quasi-claw-free graphs”, Discrete Math., 179 (1998), 13–26 | DOI | MR | Zbl

[21] Abbas M., Benmeziane Z., “Hamiltonicity in partly claw-free graphs”, RAIRO, Oper. Res., 43 (2009), 103–113 | DOI | MR

[22] Tutte W. T., “The factorization of linear graphs”, J. London Math. Soc., 22 (1947), 107–111 | DOI | MR | Zbl

[23] Yu Q., “Characterizations of various matching extensions in graphs”, Australas. J. Comb., 7 (1993), 55–64 | MR | Zbl