On the dependence of the complexity and depth of reversible circuits consisting of NOT, CNOT, and 2-CNOT gates on the number of additional inputs
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 8-26
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with the complexity and depth of reversible circuits consisting of NOT, CNOT, and 2-CNOT gates under constraints on the number of additional inputs. We study the Shannon functions for the complexity $L(n, q)$ and depth $D(n,q)$ of a reversible circuit implementing a map $f\colon \mathbb{Z}_2^n \to \mathbb{Z}_2^n$ under the condition that the number of additional inputs $q$ is in the range $8n q \lesssim n2^{n-\lceil n \mathop / \phi(n)\rceil}$, where $\phi(n) \to \infty$ and $n \mathop / \phi(n) - \log_2 n \to \infty$ as $n \to \infty$. We establish the upper estimates $L(n,q) \lesssim 2^n + 8n2^n \mathop / (\log_2 (q-4n) - \log_2 n - 2)$ and $D(n,q) \lesssim 2^{n+1}(2,5 + \log_2 n - \log_2 (\log_2 (q - 4n) - \log_2 n - 2))$ for this range of $q$. The asymptotics $L(n,q) \asymp n2^n \mathop / \log_2 q$ is established for $q$ such that $n^2 \lesssim q \lesssim n2^{n-\lceil n \mathop / \phi(n)\rceil}$, where $\phi(n) \to \infty$ and $n \mathop / \phi(n) - \log_2 n \to \infty$ as $n \to \infty$.
Keywords:
reversible circuits, circuit complexity, circuit depth, computations with memory.
@article{DM_2020_32_1_a1,
author = {D. V. Zakablukov},
title = {On the dependence of the complexity and depth of reversible circuits consisting of {NOT,} {CNOT,} and {2-CNOT} gates on the number of additional inputs},
journal = {Diskretnaya Matematika},
pages = {8--26},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a1/}
}
TY - JOUR AU - D. V. Zakablukov TI - On the dependence of the complexity and depth of reversible circuits consisting of NOT, CNOT, and 2-CNOT gates on the number of additional inputs JO - Diskretnaya Matematika PY - 2020 SP - 8 EP - 26 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2020_32_1_a1/ LA - ru ID - DM_2020_32_1_a1 ER -
%0 Journal Article %A D. V. Zakablukov %T On the dependence of the complexity and depth of reversible circuits consisting of NOT, CNOT, and 2-CNOT gates on the number of additional inputs %J Diskretnaya Matematika %D 2020 %P 8-26 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2020_32_1_a1/ %G ru %F DM_2020_32_1_a1
D. V. Zakablukov. On the dependence of the complexity and depth of reversible circuits consisting of NOT, CNOT, and 2-CNOT gates on the number of additional inputs. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 8-26. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a1/