Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2019_31_4_a6, author = {A. V. Shklyaev}, title = {Large deviations of branching process in~a~random environment}, journal = {Diskretnaya Matematika}, pages = {102--115}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2019_31_4_a6/} }
A. V. Shklyaev. Large deviations of branching process in~a~random environment. Diskretnaya Matematika, Tome 31 (2019) no. 4, pp. 102-115. http://geodesic.mathdoc.fr/item/DM_2019_31_4_a6/
[1] Buraczewski D., Damek E., Mikosch T., Stochastic Models with Power-Law Tails: The Equation $X = AX + B$, Springer, 2016 | MR | Zbl
[2] Kesten H., “Random difference equations and renewal theory for products of random matrices”, Acta Math., 51:1 (1973), 207–248 | DOI | MR
[3] Goldie C., “Implicit renewal theory and tails of solutions of random equations”, Ann. Appl. Probab., 1:1 (1991), 126–166 | DOI | MR | Zbl
[4] Engle R.F., “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United”, Econometrica, 50:4 (1982), 987–1000 | DOI | MR
[5] Alsmeyer G., Iksanov A., “A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks”, Electr. J. Probab., 14 (2009), 289–313 | DOI | MR | Zbl
[6] Buraczewski D., Damek E., Mikosch T., Zienkiewicz J., “Large deviations for solutions to stochastic recurrence equations under Kesten's condition”, Ann. Probab., 41 (2013), 2755–2790 | DOI | MR | Zbl
[7] Konstantinides D. G., Mikosch T., “Large deviations and ruin probabilities for solutions to stochastic recurrence equations with heavy-tailed innovations”, Ann. Probab., 33:5 (2005), 1992–2035 | DOI | MR | Zbl
[8] A.V. Shklyaev, “Large deviations for solution of random recurrence equation”, Markov Processes and Related Fields, 22:1 (2016), 139–164 | MR | Zbl
[9] Borovkov A.A., Teoriya veroyatnostei, URSS, 2009, 652 pp.