Large deviations of branching process in a random environment
Diskretnaya Matematika, Tome 31 (2019) no. 4, pp. 102-115
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this first part of the paper we find the asymptotic formulas for the probabilities of large deviations of the sequence defined by the random difference equation $Y_{n+1}=A_{n} Y_n + B_n$, where $A_1,A_2,\ldots$ are independent identically distributed random variables and $B_n$ may depend on $\{(A_k,B_k),0\leqslant k$ for any $n\geqslant1$. In the second part of the paper this results are applied to the large deviations of branching processes in a random environment.
Keywords: random difference equations, probabilities of large deviations, branching processes in a random environment } \classification[Funding]{The study was supported by the Russian Science Foundation (project 19-11-00111) in the Steklov Mathematical Institute of Russian Academy of Sciences.
@article{DM_2019_31_4_a6,
     author = {A. V. Shklyaev},
     title = {Large deviations of branching process in~a~random environment},
     journal = {Diskretnaya Matematika},
     pages = {102--115},
     year = {2019},
     volume = {31},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_4_a6/}
}
TY  - JOUR
AU  - A. V. Shklyaev
TI  - Large deviations of branching process in a random environment
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 102
EP  - 115
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_4_a6/
LA  - ru
ID  - DM_2019_31_4_a6
ER  - 
%0 Journal Article
%A A. V. Shklyaev
%T Large deviations of branching process in a random environment
%J Diskretnaya Matematika
%D 2019
%P 102-115
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/DM_2019_31_4_a6/
%G ru
%F DM_2019_31_4_a6
A. V. Shklyaev. Large deviations of branching process in a random environment. Diskretnaya Matematika, Tome 31 (2019) no. 4, pp. 102-115. http://geodesic.mathdoc.fr/item/DM_2019_31_4_a6/

[1] Buraczewski D., Damek E., Mikosch T., Stochastic Models with Power-Law Tails: The Equation $X = AX + B$, Springer, 2016 | MR | Zbl

[2] Kesten H., “Random difference equations and renewal theory for products of random matrices”, Acta Math., 51:1 (1973), 207–248 | DOI | MR

[3] Goldie C., “Implicit renewal theory and tails of solutions of random equations”, Ann. Appl. Probab., 1:1 (1991), 126–166 | DOI | MR | Zbl

[4] Engle R.F., “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United”, Econometrica, 50:4 (1982), 987–1000 | DOI | MR

[5] Alsmeyer G., Iksanov A., “A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks”, Electr. J. Probab., 14 (2009), 289–313 | DOI | MR | Zbl

[6] Buraczewski D., Damek E., Mikosch T., Zienkiewicz J., “Large deviations for solutions to stochastic recurrence equations under Kesten's condition”, Ann. Probab., 41 (2013), 2755–2790 | DOI | MR | Zbl

[7] Konstantinides D. G., Mikosch T., “Large deviations and ruin probabilities for solutions to stochastic recurrence equations with heavy-tailed innovations”, Ann. Probab., 33:5 (2005), 1992–2035 | DOI | MR | Zbl

[8] A.V. Shklyaev, “Large deviations for solution of random recurrence equation”, Markov Processes and Related Fields, 22:1 (2016), 139–164 | MR | Zbl

[9] Borovkov A.A., Teoriya veroyatnostei, URSS, 2009, 652 pp.