Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2019_31_4_a2, author = {V. O. Mironkin}, title = {Collisions and incidence of vertices and components in the graph of $k$-fold iteration of the uniform random mapping}, journal = {Diskretnaya Matematika}, pages = {38--52}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2019_31_4_a2/} }
TY - JOUR AU - V. O. Mironkin TI - Collisions and incidence of vertices and components in the graph of $k$-fold iteration of the uniform random mapping JO - Diskretnaya Matematika PY - 2019 SP - 38 EP - 52 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2019_31_4_a2/ LA - ru ID - DM_2019_31_4_a2 ER -
V. O. Mironkin. Collisions and incidence of vertices and components in the graph of $k$-fold iteration of the uniform random mapping. Diskretnaya Matematika, Tome 31 (2019) no. 4, pp. 38-52. http://geodesic.mathdoc.fr/item/DM_2019_31_4_a2/
[1] Zubkov A. M., “Vychislenie raspredelenii kharakteristik chisel komponent i tsiklicheskikh tochek sluchainogo otobrazheniya”, Matematicheskie voprosy kriptografii, 1:2 (2010), 5–18 | DOI
[2] Zubkov A. M., Serov A. A., “Predelnaya teorema dlya moschnosti obraza podmnozhestva pri kompozitsii sluchainykh otobrazhenii”, Diskretnaya matematika, 29:1 (2017), 17–26 ; Zubkov A. M., Serov A. A., “Limit theorem for the size of an image of subset under compositions of random mappings”, Discrete Math. Appl., 28:2 (2018), 131–138 | DOI | DOI | MR | Zbl
[3] Zubkov A. M., Serov A. A., “Otsenki srednego razmera obraza podmnozhestva pri kompozitsii sluchainykh otobrazhenii”, Diskretnaya matematika, 30:2 (2018), 27–36 | DOI | Zbl
[4] Mikhailov V. G., “O povtoryaemosti sostoyanii datchika psevdosluchainykh chisel pri ego mnogokratnom ispolzovanii”, Teoriya veroyatn. i ee primen., 40:4 (1995), 786–797 | MR | Zbl
[5] Mikhailov V. G., “Issledovanie kombinatorno-veroyatnostnoi modeli avtomatov iz registrov s neravnomernym dvizheniem”, Trudy po diskretnoi matematike, 2002, 139–149
[6] Mikhailov V. G., “Issledovanie chisla tsiklicheskikh tochek avtomata iz registrov s neravnomernym dvizheniem”, Trudy po diskretnoi matematike, 2002, 167–172
[7] Pogorelov B. A., Sachkov V. N. (red.), Slovar kriptograficheskikh terminov, MTsNMO, M., 2006, 94 pp.
[8] Vasilenko O. N., Teoretiko-chislovye algoritmy v kriptografii, MTsNMO, M., 2003, 328 pp.
[9] Hellman M. E., “A cryptanalytic time-memory trade-off”, IEEE Trans. Inf. Theory, 1980, 401–406 | DOI | MR | Zbl
[10] Pilshchikov D. V., “Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the Galton–Watson process”, Matematicheskie voprosy kriptografii, 5:2 (2014), 103–108 | DOI
[11] Pilshchikov D. V., “On the limiting mean values in probabilistic models of time-memory-data tradeoff methods”, Matematicheskie voprosy kriptografii, 6:2 (2015), 59–65 | DOI | MR
[12] Pilschikov D. V., “Issledovanie slozhnosti metoda raduzhnykh tablits s markerami tsepochek”, Matematicheskie voprosy kriptografii, 8:4 (2017), 99–116 | DOI | MR
[13] Avoine G., Junod P., Oechslin P., “Characterization and improvement of time-memory trade-off based on perfect tables”, Trans. Inf. Syst. Secur., 11:17 (2008), 1–17
[14] Oechslin P., “Making a faster cryptanalytic time-memory trade-off”, Lect. Notes Comput. Sci., 2729 (2003), 617–630 | DOI | MR | Zbl
[15] Zubkov A. M., Mironkin V. O., “Raspredelenie dliny otrezka aperiodichnosti v grafe $k$-kratnoi iteratsii sluchainogo ravnoveroyatnogo otobrazheniya”, Matematicheskie voprosy kriptografii, 8:4 (2017), 63–74 | DOI | MR
[16] Zubkov A. M., Serov A. A., “Sovokupnost obrazov podmnozhestva konechnogo mnozhestva pri iteratsiyakh sluchainykh otobrazhenii”, Diskretnaya matematika, 26:4 (2014), 43–50 ; Zubkov A. M., Serov A. A., “Images of subset of finite set under iterations of random mappings”, Discrete Math. Appl., 25:3 (2015), 179–185 | DOI | DOI | MR | Zbl
[17] Mironkin V. O., Mikhailov V. G., “O mnozhestve obrazov $k$-kratnoi iteratsii ravnoveroyatnogo sluchainogo otobrazheniya”, Matematicheskie voprosy kriptografii, 9:3 (2018), 99–108 | DOI | MR
[18] Mironkin V. O., “Ob otsenkakh raspredeleniya dliny otrezka aperiodichnosti v grafe $k$-kratnoi iteratsii ravnoveroyatnogo sluchainogo otobrazheniya”, Prikladnaya diskretnaya matematika, 42 (2018), 6–17 | MR
[19] Pilschikov D. V., “Asimptoticheskoe povedenie moschnosti polnogo proobraza sluchainogo mnozhestva pri iteratsiyakh otobrazhenii konechnogo mnozhestva”, Matematicheskie voprosy kriptografii, 8:1 (2017), 95–106 | DOI
[20] Rubin H., Sitgreaves R., Probability distributions related to random transformations of a finite set, Tech. Rept. No19A, Appl. Math. and Statist. Lab., Stanford Univ., 1954, 50 pp.
[21] Mironkin V. O., “Sloi v grafe $k$-kratnoi iteratsii ravnoveroyatnogo sluchainogo otobrazheniya”, Matematicheskie voprosy kriptografii, 10:1 (2019), 73–82 | DOI | MR
[22] Mironkin V. O., “O nekotorykh veroyatnostnykh kharakteristikakh algoritma vyrabotki klyucha «CRYPTOPRO KEY MESHING»”, Problemy informatsionnoi bezopasnosti. Kompyuternye sistemy, 2015, no. 4, 140–146
[23] Chistyakov V. P., Kurs teorii veroyatnostei, 7-e izd., Drofa, M., 2007, 253 pp.
[24] Khalipov P. V., Veroyatnost pokrytiya konechnogo mnozhestva komponentoi sluchainogo otobrazheniya, Diplomnaya rabota, mekh-mat MGU im. M.V. Lomonosova, 2008
[25] Harris B., “Probability distributions related to random mapping”, Ann. Math. Statist., 31:4 (1960), 1045-1062 | DOI | MR | Zbl
[26] Tokareva N. N., Simmetrichnaya kriptografiya, Kratkii kurs: uchebnoe posobie, Novosib. gos. un-t, Novosibirsk, 2012, 234 pp.