Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2019_31_4_a1, author = {R. M. Kolpakov and M. A. Posypkin}, title = {Effective parallelization strategy for the solution of subset sum problems by the branch-and-bound method}, journal = {Diskretnaya Matematika}, pages = {20--37}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2019_31_4_a1/} }
TY - JOUR AU - R. M. Kolpakov AU - M. A. Posypkin TI - Effective parallelization strategy for the solution of subset sum problems by the branch-and-bound method JO - Diskretnaya Matematika PY - 2019 SP - 20 EP - 37 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2019_31_4_a1/ LA - ru ID - DM_2019_31_4_a1 ER -
%0 Journal Article %A R. M. Kolpakov %A M. A. Posypkin %T Effective parallelization strategy for the solution of subset sum problems by the branch-and-bound method %J Diskretnaya Matematika %D 2019 %P 20-37 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2019_31_4_a1/ %G ru %F DM_2019_31_4_a1
R. M. Kolpakov; M. A. Posypkin. Effective parallelization strategy for the solution of subset sum problems by the branch-and-bound method. Diskretnaya Matematika, Tome 31 (2019) no. 4, pp. 20-37. http://geodesic.mathdoc.fr/item/DM_2019_31_4_a1/
[1] Martello S., Toth P., Knapsack Problems, John Wiley Sons Ltd, Chichester, England, 1990, 296 pp. | MR | Zbl
[2] Kellerer H., Pfershy U., Pisinger D., Knapsack Problems, Springer Verlag, Berlin Heidelberg, 2004, 548 pp. | MR | Zbl
[3] Kolpakov R. M., Posypkin M. A., “On the best choice of a branching variable in the subset sum problem”, Discrete Math. Appl., 28:1 (2018), 29–34 | DOI | DOI | MR | MR | Zbl
[4] Finkelshtein Yu.Yu., Priblizhennye metody i prikladnye zadachi diskretnogo programmirovaniya, Nauka, Moskva, 1976, 265 pp.
[5] Grishukhin V.P., “Effektivnost metoda vetvei i granits v zadachakh s bulevymi peremennymi”: v kn. Fridman A.A., Issledovaniya po diskretnoi optimizatsii, Nauka, Moskva, 1976, 203–230
[6] Kolpakov R. M., Posypkin M. A., “Upper and lower bounds for the complexity of the branch and bound method for the knapsack problem”, Discrete Math. Appl., 20:1 (2010), 95–112 | DOI | DOI | MR | Zbl
[7] Bhatt S.N., Greenberg D., Leighton F.T., Liu P., “Tight bounds for on-line tree embeddings”, SIAM J. Comput., 29:2 (1999), 474–491 | DOI | MR
[8] Herley K.T., Pietracaprina A., Pucci G., “Deterministic parallel backtrack search”, Theor. Comput. Sci., 270 (2002), 309–324 | DOI | MR | Zbl
[9] Karp R.M., Zhang Y., “Parallel algorithms for backtrack search and branch and bound computation”, J. ACM, 40:3 (1993), 765–789 | DOI | MR | Zbl
[10] Pietracaprina A., Pucci G., Silvestri F., Vandin F., “Space-efficient parallel algorithms for combinatorial search problems”, J. Paral. Distrib. Comput., 76 (2015), 58–65 | DOI | MR
[11] Wu I.C., Kung H.T., “Communication complexity for parallel divide-and-conquer”, Proc. 32nd IEEE Symp. Found. Comput. Sci., 1991, 151–162 | MR