Subgroups of direct products of groups invariant under the action of permutationson factors
Diskretnaya Matematika, Tome 31 (2019) no. 4, pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We study subgroups of the direct product of two groups invariant under the action of permutations on factors. An invariance criterion for the subdirect product of two groups under the action of permutations on factors is put forward. Under certain additional constraints on permutations, we describe the subgroups of the direct product of a finite number of groups that are invariant under the action of permutations on factors. We describe the subgroups of the additive group of vector space over a finite field of characteristic 2 which are invariant under the coordinatewise action of inversion permutation of nonzero elements of the field.
Keywords: direct product of groups, invariant cosets, XSL-algorithms, s-boxes layer.
@article{DM_2019_31_4_a0,
     author = {D. A. Burov},
     title = {Subgroups of direct products of groups invariant under the action of permutationson factors},
     journal = {Diskretnaya Matematika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_4_a0/}
}
TY  - JOUR
AU  - D. A. Burov
TI  - Subgroups of direct products of groups invariant under the action of permutationson factors
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 3
EP  - 19
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_4_a0/
LA  - ru
ID  - DM_2019_31_4_a0
ER  - 
%0 Journal Article
%A D. A. Burov
%T Subgroups of direct products of groups invariant under the action of permutationson factors
%J Diskretnaya Matematika
%D 2019
%P 3-19
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_4_a0/
%G ru
%F DM_2019_31_4_a0
D. A. Burov. Subgroups of direct products of groups invariant under the action of permutationson factors. Diskretnaya Matematika, Tome 31 (2019) no. 4, pp. 3-19. http://geodesic.mathdoc.fr/item/DM_2019_31_4_a0/