Using binary operations to constructa transitive set of block transformations
Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 93-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the set of transformations $\{\Sigma^F\colon F\in\mathcal B^*(\Omega)\}$ implemented by a network $\Sigma$ with a single binary operation $F$, where $\mathcal B^*(\Omega)$ is the set of all binary operations on $\Omega$ that are invertible as function of the second variable. We state a criterion of bijectivity of all transformations from the family $\{\Sigma^F\colon F\in\mathcal B^*(\Omega)\}$ in terms of the structure of the network $\Sigma$, identify necessary and sufficient conditions of transitivity of the set of transformations $\{\Sigma^F\colon F\in\mathcal B^*(\Omega)\}$, and propose an efficient way of verifying these conditions. We also describe an algorithm for construction of networks $\Sigma$ with transitive sets of transformations $\{\Sigma^F\colon F\in\mathcal B^*(\Omega)\}$.
Keywords: network, block transformation, transitive class of block transformations.
@article{DM_2019_31_3_a6,
     author = {I. V. Cherednik},
     title = {Using binary operations to constructa transitive set of block transformations},
     journal = {Diskretnaya Matematika},
     pages = {93--113},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_3_a6/}
}
TY  - JOUR
AU  - I. V. Cherednik
TI  - Using binary operations to constructa transitive set of block transformations
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 93
EP  - 113
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_3_a6/
LA  - ru
ID  - DM_2019_31_3_a6
ER  - 
%0 Journal Article
%A I. V. Cherednik
%T Using binary operations to constructa transitive set of block transformations
%J Diskretnaya Matematika
%D 2019
%P 93-113
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_3_a6/
%G ru
%F DM_2019_31_3_a6
I. V. Cherednik. Using binary operations to constructa transitive set of block transformations. Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 93-113. http://geodesic.mathdoc.fr/item/DM_2019_31_3_a6/

[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967

[2] Cherednik I. V., “Odin podkhod k postroeniyu tranzitivnogo mnozhestva blochnykh preobrazovanii”, Prikladnaya diskretnaya matematika, 38 (2017), 5–34