On classes of functions of many-valued logic with minimal logarithmic growth rate
Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 47-57

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion for the minimal logarithmic growth rate for an arbitrary set with a given set of operations defined on it, i.e., we describe all finite sets $A$ with operations on them such that the growth rate differs by at most a constant from the logarithmic growth rate to base $|A|$.
Keywords: growth rate, generating set, finite set.
@article{DM_2019_31_3_a3,
     author = {S. A. Komkov},
     title = {On classes of functions of many-valued logic with minimal logarithmic growth rate},
     journal = {Diskretnaya Matematika},
     pages = {47--57},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_3_a3/}
}
TY  - JOUR
AU  - S. A. Komkov
TI  - On classes of functions of many-valued logic with minimal logarithmic growth rate
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 47
EP  - 57
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_3_a3/
LA  - ru
ID  - DM_2019_31_3_a3
ER  - 
%0 Journal Article
%A S. A. Komkov
%T On classes of functions of many-valued logic with minimal logarithmic growth rate
%J Diskretnaya Matematika
%D 2019
%P 47-57
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_3_a3/
%G ru
%F DM_2019_31_3_a3
S. A. Komkov. On classes of functions of many-valued logic with minimal logarithmic growth rate. Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 47-57. http://geodesic.mathdoc.fr/item/DM_2019_31_3_a3/