On classes of functions of many-valued logic with minimal logarithmic growth rate
Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 47-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion for the minimal logarithmic growth rate for an arbitrary set with a given set of operations defined on it, i.e., we describe all finite sets $A$ with operations on them such that the growth rate differs by at most a constant from the logarithmic growth rate to base $|A|$.
Keywords: growth rate, generating set, finite set.
@article{DM_2019_31_3_a3,
     author = {S. A. Komkov},
     title = {On classes of functions of many-valued logic with minimal logarithmic growth rate},
     journal = {Diskretnaya Matematika},
     pages = {47--57},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_3_a3/}
}
TY  - JOUR
AU  - S. A. Komkov
TI  - On classes of functions of many-valued logic with minimal logarithmic growth rate
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 47
EP  - 57
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_3_a3/
LA  - ru
ID  - DM_2019_31_3_a3
ER  - 
%0 Journal Article
%A S. A. Komkov
%T On classes of functions of many-valued logic with minimal logarithmic growth rate
%J Diskretnaya Matematika
%D 2019
%P 47-57
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_3_a3/
%G ru
%F DM_2019_31_3_a3
S. A. Komkov. On classes of functions of many-valued logic with minimal logarithmic growth rate. Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 47-57. http://geodesic.mathdoc.fr/item/DM_2019_31_3_a3/

[1] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987, 416 pp. | MR

[2] Arratun R., Opticheskie vychisleniya, Mir, M., 1993, 441 pp.

[3] Komkov S. A., “Moschnosti generiruyuschikh mnozhestv po operatsiyam iz klassov reshetki Posta”, Diskretnaya matematika, 30:1 (2018), 19–38 | DOI | MR

[4] Nikolskii S. M., Kurs matematicheskogo analiza, Uchebnik dlya vuzov, 6-e izd., FIZMATLIT, M., 2001, 592 pp.

[5] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986, 384 pp. | MR

[6] Erfanian A., Wiegold J., “A note on growth sequences of finite simple groups”, Bull. Australian Math. Soc., 51:3 (1995), 495–499 | DOI | MR | Zbl

[7] Lau D., Function Algebras on Finite Sets, Springer Science Business Media, Berlin, Heidelberg, 2006, 668 pp. | Zbl

[8] Meier D., Wiegold J., “Growth sequences of finite groups V”, J. Australian Math. Soc., 31:3 (1981), 374–375 | DOI | MR | Zbl

[9] Rosenberg I., “Über die funktionale Vollständigkeit in den mehrwertigen Logiken”, Pozpravy Ceskoslovensken Akad. Ved., 80:3 (1970), 3–93

[10] Pollák G., “Growth sequence of globally idempotent semigroups”, J. Australian Math. Soc., 48:1 (1990), 87–88 | DOI | MR | Zbl

[11] Quick M., Ruškuc N., “Growth of generating sets for direct powers of classical algebraic structures”, J. Australian Math. Soc., 89:1 (2010), 105–126 | DOI | MR | Zbl

[12] Riedel H. H. J., “Growth sequences of finite algebras”, Algebra Universalis, 20:1 (1985) | DOI | MR | Zbl

[13] Sperner E., “Ein Satz über Untermengen einer endlichen Menge”, Mathematische Zeitschrift, 27:1 (1928), 544–548 | DOI | MR | Zbl

[14] Stewart A. G. R., Wiegold J., “Growth sequences of finitely generated groups II”, Bull. Australian Math. Soc., 40:2 (1989), 323–329 | DOI | MR | Zbl

[15] Wiegold J., “Growth sequences of finite groups”, J. Australian Math. Soc., 17:2 (1974), 133–141 | DOI | MR | Zbl

[16] Wiegold J., “Growth sequences of finite groups II”, J. Australian Math. Soc., 20:2 (1975), 225–229 | DOI | MR | Zbl

[17] Wiegold J., “Growth sequences of finite groups III”, J. Australian Math. Soc., 25:2 (1978), 142–144 | DOI | MR | Zbl

[18] Wiegold J., “Growth sequences of finite groups IV”, J. Australian Math. Soc., 29:1 (1980), 14–16 | DOI | MR | Zbl

[19] Wiegold J., Lausch H., “Growth sequences of finite semigroups”, J. Australian Math. Soc., 43:1 (1987), 16–20 | DOI | MR | Zbl

[20] Wiegold J., Wilson J. S., “Growth sequences of finitely generated groups”, Archiv der Mathematik, 30:1 (1978), 337–343 | DOI | MR | Zbl

[21] Zhuk D., “The size of generating sets of powers”, 2015, arXiv: 1504.02121 | MR