Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2019_31_3_a1, author = {A. R. Vasin}, title = {Bounds on the discrepancy of linear recurring sequences over {Galois} rings}, journal = {Diskretnaya Matematika}, pages = {17--25}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2019_31_3_a1/} }
A. R. Vasin. Bounds on the discrepancy of linear recurring sequences over Galois rings. Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 17-25. http://geodesic.mathdoc.fr/item/DM_2019_31_3_a1/
[1] V.L. Kurakin, A.S. Kuzmin, A.V. Mikhalev, A.A. Nechaev, “Linear recurrent sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[2] A.S. Kuzmin, V.L. Kurakin, A.A. Nechaev, “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, v. 1, Izd-vo TVP, M., 1997, 139–202
[3] H. Niederreiter, “On the distribution of pseudo-random numbers generated by the linear congruential method. III”, Math. Comput., 30 (1976), 571–597 | DOI | MR | Zbl
[4] H. Niederreiter, “Statistical tests for linear congruential pseudo-random numbers”, Proc. Comput. Statist. (Leiden), Compstat 1978, 1978, 398–404 | MR
[5] H. Niederreiter, “Statistical independence properties of Tausworthe pseudo-random numbers”, Proc. 3rd Caribbean Conf. on Combinatorics and Computing (Cave Hill, Barbados), 1981, 163–168 | Zbl
[6] H. Niederreiter, “Statistical tests for Tausworthe pseudo-random numbers”, Probability and Statistical Inference, D.Reidel Publ. Co., 1982, 265–274 | DOI | MR
[7] H. Niederreiter, “The performance of $k$-step pseudorandom number generators under the uniformity test”, SIAM J. Sci. Statist. Computing, 5 (1984), 798–810 | DOI | MR | Zbl
[8] H. Niederreiter, “The serial test for digital $k$-step pseudorandom numbers”, Math. J. Okayama Univ., 30 (1988), 93–119 | MR | Zbl
[9] H. Niederreiter, “A statistical analysis of generalized feedback shift register pseudorandom number generators”, SIAM J. Sci. Statist. Computing, 8 (1987), 1035–1051 | DOI | MR | Zbl
[10] H. Niederreiter, “Point sets and sequences with small discrepancy”, Monatsh. Math., 104 (1987), 273–337 | DOI | MR | Zbl
[11] H. Niederreiter, “Pseudorandom numbers generated from shift register sequences”, Lect. Notes Math., 1452, Springer, Berlin, Heidelberg, 1990, 165–177 | DOI | MR
[12] L. Keipers, G. Niderreiter, Ravnomernoe raspredelenie posledovatelnostei, Nauka. Gl. red. fiz.-mat. lit., M., 1985
[13] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992 | MR | Zbl
[14] H. Niederreiter, A. Winterhof, Applied number theory, Springer International Publishing, 2015 | MR | Zbl
[15] P. Sole, D. Zinoviev, “Inversive congruential pseudorandom numbers over Galois rings”, Eur. J. Comb., 30:2 (2009), 458–467 | DOI | MR | Zbl
[16] E.V. Vernigora, “Inversnyi kongruentnyi generator nad koltsom Galua kharakteristiki $p^l$”, Ukr. matem. vest., 8:4 (2011), 607–618
[17] A. A. Nechaev, “Kerdock code in a cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384 | DOI | MR | Zbl | Zbl
[18] B.R. McDonald, Finite rings with identity, Pure Appl. Math., 28, Dekker, New York, 1974 | MR | Zbl
[19] A. A. Nechaev, “Cycle types of linear substitutions over finite commutative rings”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 283–311 | MR | Zbl
[20] K.L. Chung, “An estimate concerning the Kolmogoroff limit distribution”, Trans. Amer. Math. Soc., 67 (1949), 36–50 | MR | Zbl
[21] T. Cochrane, “On a trigonometric inequality of Vinogradov”, J. Number Theory, 27:1 (1987), 9–16 | DOI | MR | Zbl
[22] V. Sison, Bases of the Galois ring $GR(p^r,m)$ over the integer ring $\mathbb{Z}_{p^r}$, 2016, arXiv: 1410.0289 | Zbl
[23] A.R. Vasin, “Otsenki chastot poyavlenii elementov na otrezkakh lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Diskretnaya matematika, 31:2 (2019), 57–68 | DOI
[24] Kamlovskii O.V., “Frequency characteristics of coordinate sequences of linear recurrences over Galois rings”, Izv. Math., 77:6 (2013), 1130–1154 | DOI | DOI | MR | Zbl