Two-sided problem for the random walk with bounded maximal increment
Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a random walk with zero drift and finite positive variance $\sigma^{2}$. For positive numbers $y, z$ we find the limit as $ n\rightarrow\infty $ of the probability that the first exit of the walk from interval $\left(-z\sigma\sqrt{n}, y\sigma\sqrt{n}\right)$ occurs through its left end, while the maximum increment of the walk until the exit is smaller than $x\sigma\sqrt{n}$, where $x$ is a positive number. The limit theorem is established for the moment of the first exit of the walk from the indicated interval under the condition that this exit occurs through its left end and the value of the maximum walk increment is bounded.
Keywords: random walks with zero drift, boundary problems, limit theorems.
@article{DM_2019_31_3_a0,
     author = {V. I. Afanasyev},
     title = {Two-sided problem for the random walk with bounded maximal increment},
     journal = {Diskretnaya Matematika},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_3_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Two-sided problem for the random walk with bounded maximal increment
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 3
EP  - 16
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_3_a0/
LA  - ru
ID  - DM_2019_31_3_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Two-sided problem for the random walk with bounded maximal increment
%J Diskretnaya Matematika
%D 2019
%P 3-16
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_3_a0/
%G ru
%F DM_2019_31_3_a0
V. I. Afanasyev. Two-sided problem for the random walk with bounded maximal increment. Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/DM_2019_31_3_a0/

[1] Spitzer F., Principles of Random Walk, Graduate Texts in Mathematics, Springer-Verlag, New York, 1964, XIII, 408 pp. | DOI | MR

[2] Afanasev V.I., “O momentakh dostizheniya dvukh vysokikh urovnei sluchainym bluzhdaniem v sluchainoi srede”, Teoriya veroyatn. i ee primen. (to appear)

[3] Billingsley P., Convergence of Probability Measures, John Wiley Sons, New York, 1968 | MR | Zbl

[4] Afanasev V.I., “Skhodimost k lokalnomu vremeni brounovskoi izviliny”, Diskretnaya matematika, 29:4 (2017), 28–40 | DOI

[5] Shimura M., “A class of conditional limit theorems related to ruin problem”, Ann. Probab., 11:1 (1983), 40–45 | DOI | MR | Zbl

[6] Doney R.A., “A note on conditioned random walk”, J. Appl. Probab., 20:2 (1983), 409–412 | DOI | MR | Zbl

[7] Feller W., An Introduction to Probability Theory and Its Applications, v. 2, 2nd ed., John Wiley Sons, 1971, 669 pp. | MR | Zbl