Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2019_31_3_a0, author = {V. I. Afanasyev}, title = {Two-sided problem for the random walk with bounded maximal increment}, journal = {Diskretnaya Matematika}, pages = {3--16}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2019_31_3_a0/} }
V. I. Afanasyev. Two-sided problem for the random walk with bounded maximal increment. Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/DM_2019_31_3_a0/
[1] Spitzer F., Principles of Random Walk, Graduate Texts in Mathematics, Springer-Verlag, New York, 1964, XIII, 408 pp. | DOI | MR
[2] Afanasev V.I., “O momentakh dostizheniya dvukh vysokikh urovnei sluchainym bluzhdaniem v sluchainoi srede”, Teoriya veroyatn. i ee primen. (to appear)
[3] Billingsley P., Convergence of Probability Measures, John Wiley Sons, New York, 1968 | MR | Zbl
[4] Afanasev V.I., “Skhodimost k lokalnomu vremeni brounovskoi izviliny”, Diskretnaya matematika, 29:4 (2017), 28–40 | DOI
[5] Shimura M., “A class of conditional limit theorems related to ruin problem”, Ann. Probab., 11:1 (1983), 40–45 | DOI | MR | Zbl
[6] Doney R.A., “A note on conditioned random walk”, J. Appl. Probab., 20:2 (1983), 409–412 | DOI | MR | Zbl
[7] Feller W., An Introduction to Probability Theory and Its Applications, v. 2, 2nd ed., John Wiley Sons, 1971, 669 pp. | MR | Zbl