On diagnostic tests of contact break for contact circuits
Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 123-142

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for $n\geqslant 2$, any $n$-place Boolean function may be implemented by a two-pole contact circuit which is irredundant and allows a diagnostic test with length not exceeding $n+k(n-2)$ under at most $k$ contact breaks. It is shown that with $k=k(n)\leqslant 2^{n-4}$, for almost all $n$-place Boolean functions, the least possible length of such a test is at most $2k+2$.
Keywords: contact circuit, contact break, diagnostic test.
@article{DM_2019_31_2_a9,
     author = {K. A. Popkov},
     title = {On diagnostic tests of contact break for contact circuits},
     journal = {Diskretnaya Matematika},
     pages = {123--142},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a9/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - On diagnostic tests of contact break for contact circuits
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 123
EP  - 142
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a9/
LA  - ru
ID  - DM_2019_31_2_a9
ER  - 
%0 Journal Article
%A K. A. Popkov
%T On diagnostic tests of contact break for contact circuits
%J Diskretnaya Matematika
%D 2019
%P 123-142
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_2_a9/
%G ru
%F DM_2019_31_2_a9
K. A. Popkov. On diagnostic tests of contact break for contact circuits. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 123-142. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a9/