On diagnostic tests of contact break for contact circuits
Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 123-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for $n\geqslant 2$, any $n$-place Boolean function may be implemented by a two-pole contact circuit which is irredundant and allows a diagnostic test with length not exceeding $n+k(n-2)$ under at most $k$ contact breaks. It is shown that with $k=k(n)\leqslant 2^{n-4}$, for almost all $n$-place Boolean functions, the least possible length of such a test is at most $2k+2$.
Keywords: contact circuit, contact break, diagnostic test.
@article{DM_2019_31_2_a9,
     author = {K. A. Popkov},
     title = {On diagnostic tests of contact break for contact circuits},
     journal = {Diskretnaya Matematika},
     pages = {123--142},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a9/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - On diagnostic tests of contact break for contact circuits
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 123
EP  - 142
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a9/
LA  - ru
ID  - DM_2019_31_2_a9
ER  - 
%0 Journal Article
%A K. A. Popkov
%T On diagnostic tests of contact break for contact circuits
%J Diskretnaya Matematika
%D 2019
%P 123-142
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_2_a9/
%G ru
%F DM_2019_31_2_a9
K. A. Popkov. On diagnostic tests of contact break for contact circuits. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 123-142. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a9/

[1] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, izd-vo Mosk. un-ta, Moskva, 1984, 138 pp.

[2] Chegis I. A., Yablonskii S. V., “Logicheskie sposoby kontrolya raboty elektricheskikh skhem”, Trudy MIAN, 51, 1958, 270–360 | MR | Zbl

[3] Yablonskii S. V., “Nadezhnost i kontrol upravlyayuschikh sistem”, Materialy Vsesoyuznogo seminara po diskretnoi matematike i ee prilozheniyam (Moskva, 31 yanvarya–2 fevralya 1984 g.), izd-vo Mosk. un-ta, Moskva, 1986, 7–12

[4] Yablonskii S. V., “Nekotorye voprosy nadezhnosti i kontrolya upravlyayuschikh sistem”, Matematicheskie voprosy kibernetiki, 1988, no. 1, 5–25, Nauka, Moskva

[5] Redkin N. P., Nadezhnost i diagnostika skhem, izd-vo Mosk. un-ta, Moskva, 1992, 192 pp.

[6] Kolyada S. S., Verkhnie otsenki dliny proveryayuschikh testov dlya skhem iz funktsionalnykh elementov, Diss. na soisk. uch. st. k.f.-m.n., Moskva, 2013, 77 pp.

[7] Madatyan Kh. A., “Polnyi test dlya bespovtornykh kontaktnykh skhem”, Problemy kibernetiki, 1970, no. 23, 103–118, Nauka, Moskva | MR

[8] Redkin N. P., “O polnykh proveryayuschikh testakh dlya kontaktnykh skhem”, Metody diskretnogo analiza v issledovanii ekstremalnykh struktur, 1983, no. 39, 80–87, izd-vo IM SO AN SSSR, Novosibirsk

[9] Redkin N. P., “O proveryayuschikh testakh zamykaniya i razmykaniya”, Metody diskretnogo analiza v optimizatsii upravlyayuschikh sistem, no. 40, Izd-vo IM SO AN SSSR, Novosibirsk, 1983, 87–99

[10] Romanov D. S., “O sinteze kontaktnykh skhem, dopuskayuschikh korotkie proveryayuschie testy”, Uchenye zapiski Kazanskogo universiteta. Fiziko-matematicheskie nauki, 156:3 (2014), 110–115

[11] Popkov K. A., “Tests of contact closure for contact circuits”, Discrete Math. Appl., 26:5 (2016), 299–308 | DOI | DOI | MR | Zbl

[12] Popkov K. A., “On fault detection tests of contact break for contact circuits”, Discrete Math. Appl., 28:6 (2018), 369–383 | DOI | DOI | MR | MR | Zbl

[13] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, Moskva, 1986, 384 pp. | MR