Compositions of a numerical semigroup
Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 77-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a numerical semigroup $S$, a nonnegative integer $a$ and $m\in S\backslash\{0\}$, we introduce the set $C(S,a,m)=\{s+aw(s~mod~m)~|~s\in S\}$, where $\{w(0), w(1), \cdots, w(m-1)\}$ is the Apéry set of $m$ in $S$. In this paper we characterize the pairs $(a,m)$ such that $C(S,a,m)$ is a numerical semigroup. We study the principal invariants of $C(S,a,m)$ which are given explicitly in terms of invariants of $S$. We also characterize the compositions $C(S,a,m)$ that are symmetric, pseudo-symmetric and almost symmetric. Finally, a result about compliance to Wilf's conjecture of $C(S,a,m)$ is given.
Keywords: numerical semigroups, compositions, Apéry sets, Frobenius number, Wilf's conjecture.
@article{DM_2019_31_2_a6,
     author = {Ze Gu},
     title = {Compositions of a numerical semigroup},
     journal = {Diskretnaya Matematika},
     pages = {77--83},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a6/}
}
TY  - JOUR
AU  - Ze Gu
TI  - Compositions of a numerical semigroup
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 77
EP  - 83
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a6/
LA  - ru
ID  - DM_2019_31_2_a6
ER  - 
%0 Journal Article
%A Ze Gu
%T Compositions of a numerical semigroup
%J Diskretnaya Matematika
%D 2019
%P 77-83
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_2_a6/
%G ru
%F DM_2019_31_2_a6
Ze Gu. Compositions of a numerical semigroup. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 77-83. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a6/

[1] Apéry R., “Sur les branches superlinéaires des courbes algébriques”, C. R. Acad. Sci. Paris, 222 (1946), 1198–1200 | MR | Zbl

[2] Barucci V., Fröberg R., “One-dimensional almost Gorenstein rings”, J. Algebra, 188 (1997), 418–442 | DOI | MR | Zbl

[3] Nari H., “Symmetries on almost symmetric numerical semigroups”, Semigroup Forum, 86 (2013), 140–154 | DOI | MR | Zbl

[4] Robles-Pérez A.M., Rosales J.C., “Modular translations of numerical semigroups”, Semigroup Forum, 86 (2013), 183–191 | DOI | MR | Zbl

[5] Rosales J.C., Branco M.B., “Irreducible numerical semigroups”, Pacif. J. Math, 209 (2003), 131–143 | DOI | MR | Zbl

[6] Rosales J.C., García-Sánchez P.A., Numerical Semigroups, Springer, New York, 2009 | MR | Zbl

[7] Rosales J.C., García-Sánchez P.A., García-García J.I., Branco M.B., “Numerical semigroups with maximal embedding dimension”, Int. J. Commutative Rings, 2 (2004), 47–53 | MR

[8] Wilf H.S., “A circle-of-lights algorithm for the “money-changing problem””, Amer. Math. Monthly, 85, 562–565 | MR | Zbl