A method of construction of differentially $4$-uniform permutations over $V_{m}$ for even $m$
Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 69-76

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the method of C. Carlet for constructing differentially 4-uniform permutations of binary vector spaces in even dimension $2k$ is suggested. It consists in restricting APN-functions in $2k+1$ variables to a linear manifold of dimension $2k$. The general construction of the method is proposed and a criterion for its applicability is established. Power permutations to which this construction is applicable are completely described and a class of suitable not one-to-one functions is presented.
Keywords: vector space, binary vector, finite field, transformation, permutation, differential uniformity, nonlinearity.
@article{DM_2019_31_2_a5,
     author = {S. A. Davydov and I. A. Kruglov},
     title = {A method of construction of differentially $4$-uniform permutations over $V_{m}$ for even $m$},
     journal = {Diskretnaya Matematika},
     pages = {69--76},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a5/}
}
TY  - JOUR
AU  - S. A. Davydov
AU  - I. A. Kruglov
TI  - A method of construction of differentially $4$-uniform permutations over $V_{m}$ for even $m$
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 69
EP  - 76
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a5/
LA  - ru
ID  - DM_2019_31_2_a5
ER  - 
%0 Journal Article
%A S. A. Davydov
%A I. A. Kruglov
%T A method of construction of differentially $4$-uniform permutations over $V_{m}$ for even $m$
%J Diskretnaya Matematika
%D 2019
%P 69-76
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_2_a5/
%G ru
%F DM_2019_31_2_a5
S. A. Davydov; I. A. Kruglov. A method of construction of differentially $4$-uniform permutations over $V_{m}$ for even $m$. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 69-76. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a5/