Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2019_31_2_a5, author = {S. A. Davydov and I. A. Kruglov}, title = {A method of construction of differentially $4$-uniform permutations over $V_{m}$ for even $m$}, journal = {Diskretnaya Matematika}, pages = {69--76}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a5/} }
TY - JOUR AU - S. A. Davydov AU - I. A. Kruglov TI - A method of construction of differentially $4$-uniform permutations over $V_{m}$ for even $m$ JO - Diskretnaya Matematika PY - 2019 SP - 69 EP - 76 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a5/ LA - ru ID - DM_2019_31_2_a5 ER -
S. A. Davydov; I. A. Kruglov. A method of construction of differentially $4$-uniform permutations over $V_{m}$ for even $m$. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 69-76. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a5/
[1] C. Carlet, “Vectorial Boolean functions for cryptography”, Boolean models and methods in mathematics, computer science, and engineering, Cambridge University Press, 2010, 398–469 | DOI | Zbl
[2] A. V. Kazimirov, V.N. Kazimirova, R.V. Oleinikov, “Metod generatsii silno nelineinykh S-blokov na osnove gradientnogo spuska”, Matematicheskie voprosy kriptografii, 5:2 (2014), 71–78 | DOI
[3] Y. Edel, A.Pott, “A new almost perfect nonlinear functions which is not quadratic”, Adv. Math. Communic., 3:1 (2009), 59–81 | DOI | MR | Zbl
[4] L. Qu, Y. Tan, C. Tan, C. Li, “Differentially 4-uniform permutations over $F_{2^{k}}$ via the switching method”, IEEE Trans. Inf. Theory, 59:7 (2013), 4675–4686 | DOI | MR | Zbl
[5] C. Carlet, “On known and new differentially uniform functions”, Lect. Notes Comput. Sci., 6812 (2011), 1–15 | DOI | Zbl
[6] L. Qu, Y. Tan, C. Li, G. Gong, “More constructions of differentially 4-uniform permutations on $F_{2^{k}}$”, Design, Codes and Cryptography, 78:2 (2016), 391–408 | MR | Zbl
[7] Y. Yu, M. Wang, Y.Li, “Constructing differentially 4-uniform permutations over $F_{2^{k}}$ from known ones”, Chinese Journal of Electronics, 22:3 (2013), 495–499
[8] D. Tang, C.Carlet, X.Tang, “Differentially 4-uniform bijections by permuting the inverse function”, Design, Codes and Cryptography, 77:1 (2015), 117–141 | DOI | MR | Zbl
[9] L. Li, M. Wang, “Constructing differentially 4-uniform permutations over $F_{2^{m}}$ from quadratic APN permutations over $F_{2^{m+1}}$”, Design, Codes and Cryptography, 72:2 (2014), 249–264 | DOI | MR | Zbl
[10] G.Kyureghyan, “Crooked maps in $F_{2^{n}}$”, Finite Fields and Their Appl., 13:3 (2007), 713–726 | DOI | MR | Zbl