Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2019_31_2_a4, author = {A. R. Vasin}, title = {Bounds on the frequencies of tuples on parts of the period of linear recurring sequences over {Galois} rings}, journal = {Diskretnaya Matematika}, pages = {57--68}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a4/} }
TY - JOUR AU - A. R. Vasin TI - Bounds on the frequencies of tuples on parts of the period of linear recurring sequences over Galois rings JO - Diskretnaya Matematika PY - 2019 SP - 57 EP - 68 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a4/ LA - ru ID - DM_2019_31_2_a4 ER -
A. R. Vasin. Bounds on the frequencies of tuples on parts of the period of linear recurring sequences over Galois rings. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 57-68. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a4/
[1] V.L. Kurakin, A.S. Kuzmin, A.V. Mikhalev, A.A. Nechaev, “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[2] A.S. Kuzmin, V.L. Kurakin, A.A. Nechaev, “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, Izd-vo TVP, M., 1997, 139-202
[3] O.V. Kamlovskii, “Frequency characteristics of coordinate sequences of linear recurrences over Galois rings”, Izv. Math., 77:6 (2013), 1130–1154 | DOI | DOI | MR | Zbl
[4] O.V. Kamlovskii, “The Sidel’nikov method for estimating the number of signs on segments of linear recurrence sequences over Galois rings”, Math. Notes, 91:3 (2012), 354–363 | DOI | DOI | MR | Zbl
[5] M.M. Glukhov, “Primenenie metoda Niderraitera-Shparlinskogo otsenki nepolnykh trigonometricheskikh summ k summam nad koltsami Galua”, Algebra i logika: teoriya i prilozheniya, Mezhdunarodnaya konferentsiya, posvyaschennaya pamyati V.P. Shunkova (Krasnoyarsk, 21-27 iyulya 2013), 37-39
[6] A.A. Nechaev, “Kerdock code in a cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384 | DOI | MR | Zbl | Zbl
[7] B.R. McDonald, Finite rings with identity, Pure Appl. Math., 28, Dekker, New York, 1974, 429 pp. | MR | Zbl
[8] A.A. Nechaev, “Cycle types of linear substitutions over finite commutative rings”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 283–311 | DOI | MR | Zbl
[9] H. Niederreiter, I.E. Shparlinski, “On the distribution and lattice structure of nonlinear congruential pseudorandom numbers”, Finite Fields Appl., 5 (1999), 246-253 | DOI | MR | Zbl
[10] P. Sole, D. Zinoviev, “Inversive congruential pseudorandom numbers over Galois rings”, Eur. J. Comb., 30:2 (2009), 458-467 | DOI | MR | Zbl
[11] E. V. Vernigora, “Inversive congruential generator over a Galois ring of dimension $p^l$”, J. Math. Sci., 182:1 (2012), 108-116 | DOI | MR | Zbl
[12] O. V. Kamlovskii, A. S. Kuzmin, “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fund. i prikl. matem., 6:4 (2000), 1083–1094 | MR | Zbl
[13] O.V. Kamlovskii, “Frequency characteristics of linear recurrence sequences over Galois rings”, Sb. Math., 200:4 (2009), 499–519 | DOI | DOI | MR | Zbl | Zbl