Group polynomials over rings
Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider polynomials over rings such that the polynomials represent Latin squares and define a group operation over the ring. We introduce the notion of a group polynomial, describe a number of properties of these polynomials and the groups generated. For the case of residue rings $\mathbb{Z}_{r^n}$, where $r$ is a prime number, we give a description of groups specified by polynomials and identify a class of group polynomials that can be used to construct controlled cryptographic transformations.
Keywords: cryptography, groups, residue rings, polynomial groups.
@article{DM_2019_31_2_a0,
     author = {A. V. Akishin},
     title = {Group polynomials over rings},
     journal = {Diskretnaya Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a0/}
}
TY  - JOUR
AU  - A. V. Akishin
TI  - Group polynomials over rings
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 3
EP  - 13
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a0/
LA  - ru
ID  - DM_2019_31_2_a0
ER  - 
%0 Journal Article
%A A. V. Akishin
%T Group polynomials over rings
%J Diskretnaya Matematika
%D 2019
%P 3-13
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_2_a0/
%G ru
%F DM_2019_31_2_a0
A. V. Akishin. Group polynomials over rings. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a0/

[1] Grukhov M.M., Remizov A.B., Shaposhnikov V.A., Obzor po teorii $k$-znachnykh funktsii, Chast 1, 1988

[2] Kurosh A.G., Lektsii po obschei algebre, Lan, SPb., 2005; Kurosh A. G., Lectures in General Algebra, Chelsea Pub Co, 1963, 335 pp. | MR

[3] Lambek I., Koltsa i moduli, Faktorial-press, M., 2005; Lambek J., Lectures on rings and modules, Blaisdell Pub. Co., New York, 1966 | MR | Zbl

[4] Larin M.V., “Tranzitivnye polinomialnye preobrazovaniya kolets vychetov”, Diskretnaya matematika, 14:2 (2002), 20–32 | DOI | Zbl

[5] Lidl R., Niderraiter G., Konechnye polya, v. 2, Mir, M., 1988 ; Lidl R., Niederreiter H., Finite Fields, Addison-Wesley Publ. Inc., 1983 | MR | MR | Zbl

[6] Karpov A.V., “Perestanovochnye mnogochleny nad primarnymi koltsami”, Prikladnaya diskretnaya matematika, 22:4 (2013), 16–21

[7] Hazewinkel M., Formal Groups and Applications, Academic Press, N.-Y., 1978 | MR | Zbl

[8] Lai X., Massey J.A., “Proposal for a new block encryption standard”, EUROCRYPT'90, Lect. Notes Comput. Sci., 473, 389–404 | DOI | MR | Zbl

[9] Lee R.B., Shi Z.J., Rivest R.L., Robshaw V.J.B., “On permutation operations in cipher design”, ITCC'04, v. 2, 2004, 569–577

[10] Li S., Null polynomials modulo $n$, arXiv: math/0510217v2

[11] Mullen G.L., “Local polynomials over $\mathbb{Z}_p$”, Fibonacci Quart., 18:2 (1980), 104–107 | MR

[12] Mullen G.L., Stevens H., “Polynomial functions $\pmod{m}$”, Acta Math. Hungar., 44 (1984), 237–241 | DOI | MR | Zbl

[13] Rivest R.L., “Permutation polynomials modulo $2^w$”, Finite Fields and Their Applications, 7 (2001), 287–292 | DOI | MR | Zbl

[14] Schnorr C.P., Vaudenay S., “Black box cryptanalysis of hash networks based on multipermutations”, EUROCRYPT'94, Lect. Notes Comput. Sci., 950, 47–57 | DOI | MR | Zbl

[15] GOST 28147-89. Sistemy obrabotki informatsii. Zaschita kriptograficheskaya. Algoritm kriptograficheskogo preobrazovaniya, Standartinform, Moskva, 1990, 26 pp.

[16] Announcing the ADVANCES ENCRYPTION STANDARD (AES), FIPS 197, 2001 | DOI