Group polynomials over rings
Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider polynomials over rings such that the polynomials represent Latin squares and define a group operation over the ring. We introduce the notion of a group polynomial, describe a number of properties of these polynomials and the groups generated. For the case of residue rings $\mathbb{Z}_{r^n}$, where $r$ is a prime number, we give a description of groups specified by polynomials and identify a class of group polynomials that can be used to construct controlled cryptographic transformations.
Keywords: cryptography, groups, residue rings, polynomial groups.
@article{DM_2019_31_2_a0,
     author = {A. V. Akishin},
     title = {Group polynomials over rings},
     journal = {Diskretnaya Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a0/}
}
TY  - JOUR
AU  - A. V. Akishin
TI  - Group polynomials over rings
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 3
EP  - 13
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a0/
LA  - ru
ID  - DM_2019_31_2_a0
ER  - 
%0 Journal Article
%A A. V. Akishin
%T Group polynomials over rings
%J Diskretnaya Matematika
%D 2019
%P 3-13
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_2_a0/
%G ru
%F DM_2019_31_2_a0
A. V. Akishin. Group polynomials over rings. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a0/