On the number of ones in outcome sequence of extended Pohl generator
Diskretnaya Matematika, Tome 31 (2019) no. 1, pp. 111-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulas for distributions of number of ones (non-zeroes) in the cycle of the output sequence of generalized binary Pohl generator are obtained. Limit theorems for these distributions are derived in the case when the lengths of registers are coprime and tend to infinity, the contents of different registers are independent, but cell contents within each register may be dependent. The consequences of these theorems are given for the case when the contents of cells are independent random variables having equiprobable distribution on $\{0,\,1\}$.
Keywords: multi-cyclic random sequence, Pohl generator, number of ones, asymptotic normality, limit theorems.
@article{DM_2019_31_1_a6,
     author = {N. M. Mezhennaya and V. G. Mikhailov},
     title = {On the number of ones in outcome sequence of extended {Pohl} generator},
     journal = {Diskretnaya Matematika},
     pages = {111--124},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_1_a6/}
}
TY  - JOUR
AU  - N. M. Mezhennaya
AU  - V. G. Mikhailov
TI  - On the number of ones in outcome sequence of extended Pohl generator
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 111
EP  - 124
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_1_a6/
LA  - ru
ID  - DM_2019_31_1_a6
ER  - 
%0 Journal Article
%A N. M. Mezhennaya
%A V. G. Mikhailov
%T On the number of ones in outcome sequence of extended Pohl generator
%J Diskretnaya Matematika
%D 2019
%P 111-124
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_1_a6/
%G ru
%F DM_2019_31_1_a6
N. M. Mezhennaya; V. G. Mikhailov. On the number of ones in outcome sequence of extended Pohl generator. Diskretnaya Matematika, Tome 31 (2019) no. 1, pp. 111-124. http://geodesic.mathdoc.fr/item/DM_2019_31_1_a6/

[1] Pohl P., “Description of MCV, a pseudo-random number generator”, Scand. Actuar. J., 1 (1976), 1–14 | DOI | MR | Zbl

[2] Mezhennaya N. M., Mikhailov V. G., “O raspredelenii chisla edinits v vykhodnoi posledovatelnosti generatora Pola nad polem $GF(2)$”, Matem. vopr. kriptogr., 4:4 (2013), 95–107 | DOI

[3] Mezhennaya N. M., “O raspredelenii chisla edinits v dvoichnoi multitsiklicheskoi posledovatelnosti”, Prikl. diskr. matem., 2015, no. 1(27), 69–77

[4] Bilyak I. B., Kamlovskii O. V., “Chastotnye kharakteristiki tsiklov vykhodnykh posledovatelnostei kombiniruyuschikh generatorov nad polem iz dvukh elementov”, Prikl. diskr. matem., 2015, no. 3(29), 17–31

[5] Kamlovskii O. V., “Kolichestvo poyavlenii vektorov na tsiklakh vykhodnykh posledovatelnostei dvoichnykh kombiniruyuschikh generatorov”, Probl. peredachi inform., 53:1 (2017), 92–100 | MR | Zbl

[6] Slovar kriptograficheskikh terminov, ed. Pogorelov B. A., Sachkov V. N., MTsNMO, M., 2006, 50 pp.

[7] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2012, 584 pp.

[8] Mezhennaya N. M., “Convergence rate estimators for the number of ones in outcome sequence of MCV generator with $m$-dependent registers items”, Sib. elektron. matem. izv., 11 (2014), 18–25 | MR | Zbl

[9] Sevastjanov B. A., “A class of limit distributions for quadratic forms from normal stochastic quantities”, Theory Probab. Appl., 6:3 (1961), 338–342 | MR

[10] Springer M. D., Thompson W. E., “The distribution of products of beta, gamma and Gaussian random variables”, SIAM J. Appl. Math., 18:4 (1970), 721–737 | DOI | MR | Zbl

[11] Seidl' L., “On limit distributions of random symmetric polynomials”, Theory Probab. Appl., 33:2 (1988), 248–259 | DOI | MR | MR