Semibinomial conditionally nonlinear autoregressive models of discrete random sequences: probabilistic properties and statistical parameter estimation
Diskretnaya Matematika, Tome 31 (2019) no. 1, pp. 72-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new model $\mathscr{P}\text{-}\mathrm{CNAR}(s)$ of sequences of discrete random variables with long memory determined by semibinomial conditionally nonlinear autoregression of order $s\in\N$ with small number of parameters. Probabilistic properties of this model are studied. For parameters of the model $\mathscr{P}\text{-}\mathrm{CNAR}(s)$ a family of consistent asymptotically normal statistical FB-estimates is suggested and the existence of an efficient FB-estimate is proved. Computational advantages of FB-estimate w.r.t. maximum likelihood estimate are shown: less restrictive sufficient conditions for uniqueness, explicit form of FB-estimate, fast recursive computation algorithm under extension of the model $\mathscr{P}\text{-}\mathrm{CNAR}(s)$. Subfamily of “sparse” FB-estimates that use some subset of frequencies of $s$-tuples is constructed, the asymptotic variance minimization problem within this subfamily is solved.
Keywords: sequence of discrete random variables, parsimonious model, long memory, efficient estimate, exponential family.
@article{DM_2019_31_1_a4,
     author = {V. A. Voloshko and Yu. S. Kharin},
     title = {Semibinomial conditionally nonlinear autoregressive models of discrete random sequences: probabilistic properties and statistical parameter estimation},
     journal = {Diskretnaya Matematika},
     pages = {72--98},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_1_a4/}
}
TY  - JOUR
AU  - V. A. Voloshko
AU  - Yu. S. Kharin
TI  - Semibinomial conditionally nonlinear autoregressive models of discrete random sequences: probabilistic properties and statistical parameter estimation
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 72
EP  - 98
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_1_a4/
LA  - ru
ID  - DM_2019_31_1_a4
ER  - 
%0 Journal Article
%A V. A. Voloshko
%A Yu. S. Kharin
%T Semibinomial conditionally nonlinear autoregressive models of discrete random sequences: probabilistic properties and statistical parameter estimation
%J Diskretnaya Matematika
%D 2019
%P 72-98
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_1_a4/
%G ru
%F DM_2019_31_1_a4
V. A. Voloshko; Yu. S. Kharin. Semibinomial conditionally nonlinear autoregressive models of discrete random sequences: probabilistic properties and statistical parameter estimation. Diskretnaya Matematika, Tome 31 (2019) no. 1, pp. 72-98. http://geodesic.mathdoc.fr/item/DM_2019_31_1_a4/

[1] Kolmogorov A. N., Uspenskii V. A., “Algorithms and Randomness”, Theory Probab. Appl., 32:3 (1987), 389–412 | DOI | MR | MR | Zbl | Zbl

[2] Zubkov A. M., “Datchiki psevdosluchainykh chisel i ikh primeneniya”, Trudy II Mezhdunar. nauchn. konf. “Matematika bezopasnosti informatsionnykh tekhnologii”, MGU, 2003, 200–206 | MR

[3] Ivchenko G. I., Medvedev Yu. I., Vvedenie v matematicheskuyu statistiku, URSS, M., 2010, 600 pp. | MR

[4] Shoitov A. M., “Veroyatnostnye modeli psevdosluchainykh posledovatelnostei v kriptografii”, Problemy informatsionnoi bezopasnosti, MGU, 2007, 116–134

[5] Mikhaylov V. G., Shoytov A. M., “On repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 25:5 (2015), 295–303 | DOI | DOI | MR | Zbl

[6] Kharin Yu. S., Petlitskii A. I., “A Markov chain of order $s$ with $r$ partial connections and statistical inference on its parameters”, Discrete Math. Appl., 17:3 (2007), 295–317 | DOI | DOI | MR | Zbl | Zbl

[7] Kharin Yu. S., Petlitskii A. I., “Identification of a binary Markov chain of order s with r partial connections subjected to additive distortions”, Discrete Math. Appl., 20:5-6 (2010), 487–508 | DOI | DOI | MR | Zbl

[8] Kharin Yu. S., Vecherko E. V., “Statistical estimation of parameters for binary Markov chain models with embeddings”, Discrete Math. Appl., 23:2 (2013), 153–169 | DOI | DOI | MR | Zbl

[9] Kharin Yu. S., Vecherko E. V., “Detection of embeddings in binary Markov chains”, Discrete Math. Appl., 26:1 (2016), 13–29 | DOI | DOI | MR | Zbl

[10] Voloshko V. A., “Steganographic capacity for one-dimensional Markov cover”, Discrete Math. Appl., 27:4 (2017), 247–268 | DOI | DOI | MR | Zbl

[11] Korotkov E. V., Korotkova M. A., Kudryashov N. A., “Information decomposition method to analyze symbolical sequences”, Physics Letters A, 2003, no. 312, 198–210 | DOI | MR | Zbl

[12] Doob J. L., Stochastic Processes, Wiley: New York, 1953 ; Dub Dzh. L., Veroyatnostnye protsessy, IL, M., 1956, 609 pp. | MR | Zbl

[13] Kharin Yu., Robustness in Statistical Forecasting, Springer, New York, 2013 | MR | Zbl

[14] Jacobs P. A., Lewis P. A. W., “Stationary discrete autoregressive-moving average time series generated by mixtures”, J. Time Series Analysis, 4:1 (1983), 19–36 | DOI | MR | Zbl

[15] Raftery A., Tavare S., “Estimation and modelling repeated patterns in high order Markov chains with the mixture transition distribution model”, J. Appl. Statist., 43:1 (1994), 179–199 | DOI | Zbl

[16] Kedem B., Fokianos K., Regression Models for Time Series Analysis, Wiley, Hoboken, 2002 | MR | Zbl

[17] Kharin Yu., Maltsew M., “Markov chain of conditional order: properties and statistical analysis”, Austrian J. Statist., 43:3–4 (2014), 205–216 | DOI

[18] Anderson T. W., The Statistical Analysis of Time Series, Wiley, 1971 ; Anderson T., Statisticheskii analiz vremennykh ryadov, Mir, M., 1976, 756 pp. | MR | Zbl

[19] Box G. E. P., Jenkins G., Time Series Analysis: Forecasting and Control, Holden-Day, 1976 ; Boks Dzh., Dzhenkins G., Analiz vremennykh ryadov: prognoz i upravlenie, Mir, M., 1974, Kn.1 406 pp., Kn.2 197 pp. | MR | Zbl

[20] Steutel F. W., van Harn K., “Discrete analogues of self-decomposability and stability”, The Annals of Probability, 7:5 (1979), 893–899 | DOI | MR | Zbl

[21] Weiss C. H., An Introduction to Discrete-Valued Time Series, Wiley, Hoboken, 2018 | Zbl

[22] Nelder J., Wedderburn R., “Generalized linear models”, J. Roy. Stat. Soc. Ser. A, 135:3 (1972), 370–384 | DOI | MR

[23] Kharin Yu. S., Voloshko V. A., Medved E. A., “Statistical estimation of parameters for binary conditionally nonlinear autoregressive time series”, Mathematical Methods of Statistics, 27:2 (2018), 103–118 | DOI | MR | Zbl

[24] Kharin Yu. S., Voloshko V. A., “Binomialnaya uslovno nelineinaya avtoregressionnaya model diskretnogo vremennogo ryada i ee veroyatnostno-statisticheskie svoistva”, Trudy In-ta matem. NAN Belarusi, 26:1 (2018), 97–107 | MR

[25] McCullagh P., Nelder J. A., Generalized Linear Models. Second Edition, Chapman and Hall, London, 1989 | MR

[26] Mishra A., Tiwary D., Singh S. K., “A class of quasi-binomial distributions”, Sankhya: The Indian J. Statistics, Ser. B, 54:1 (1992), 67–76 | MR | Zbl

[27] Amari S., Nagaoka H., Methods of Information Geometry, Oxford University Press, 2000 | MR | Zbl

[28] Koepf W., Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities, Springer-Verlag, London, 2014 | MR | Zbl

[29] Billingsley P., “Statistical methods in Markov chains”, Ann. Math. Statist., 32:1 (1961), 12–40 | DOI | MR | Zbl

[30] Shiryaev A. N., Probability, Springer, New York, 1995 | MR | Zbl

[31] Besag J., “Statistical analysis of non-lattice data”, The Statistician, 24(3) (1975), 179–195 | DOI

[32] Noble B., Daniel J. W., Applied Linear Algebra, 3rd Edition, Prentice-hall, Englewood Cliffs, NJ, 1988 | MR

[33] Wald A., “Tests of statistical hypotheses concerning several parameters when the number of observations is large”, Trans. Amer. Math. Soc., 54:3 (1943), 426–482 | DOI | MR | Zbl

[34] Bagnoli M., Bergstrom T., Log-Concave Probability and Its Applications, University of Michigan, 1989

[35] Jordan C., “Essai sur la géométrie à $n$ dimensions”, Bull. Soc. Math. France, 1875, no. 3, 103–174 | DOI | MR | Zbl