Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2019_31_1_a1, author = {V. I. Afanasyev}, title = {Functional limit theorem for the local time of stopped random walk}, journal = {Diskretnaya Matematika}, pages = {7--20}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2019_31_1_a1/} }
V. I. Afanasyev. Functional limit theorem for the local time of stopped random walk. Diskretnaya Matematika, Tome 31 (2019) no. 1, pp. 7-20. http://geodesic.mathdoc.fr/item/DM_2019_31_1_a1/
[1] Afanasyev V.I., “Functional limit theorem for a stopped random walk attaining a high level”, Discrete Math. Appl., 27:5 (2017), 269–276 | DOI | DOI | MR | Zbl
[2] Hooghiemstra G., “Conditioned limit theorems for waiting-time processes of the M/G/1 queue”, J. Appl. Probab., 20:3 (1983), 675-688 | DOI | MR | Zbl
[3] Iglehart D.L., “On a functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 2:4 (1974), 608-619 | DOI | MR | Zbl
[4] Bolthausen E., “Functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 4:3 (1976), 480-485 | DOI | MR | Zbl
[5] Afanasev V.I., “Skhodimost k lokalnomu vremeni brounovskoi izviliny”, Diskretnaya matematika, 29:4 (2017), 28–40 | DOI | MR
[6] Billingsley P., Convergence of Probability Measures, New York: John Wiley Sons, 1968 | MR | Zbl
[7] Bulinski A.V., Shashkin A.P., Limit theorems for associated random fields and related systems, World Scientific, Singapore, 2007, 436 pp. | MR
[8] Borodin A.N., Stochastic Processes, Birkhäuser Basel, 2017, 626 pp. | MR | Zbl
[9] Borodin A.N., “On the asymptotic behavior of local times of recurrent random walks with finite variance”, Theory Probab. Appl., 26:4 (1982), 758–772 | DOI | MR | Zbl | Zbl
[10] Takacs L., “Brownian local times”, J. Appl. Math. and Stoch. Anal., 8:3 (1995), 209-232 | DOI | MR | Zbl