Functional limit theorem for the local time of stopped random walk
Diskretnaya Matematika, Tome 31 (2019) no. 1, pp. 7-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Integer random walk $\left\{ S_{n},\,n\geq 0\right\} $ with zero drift and finite variance $\sigma ^{2}$ stopped at the moment $T$ of the first visit to the half axis $\left( -\infty ,0\right] $ is considered. For the random process which associates the variable $u\geq 0$ with the number of visits the state $\left\lfloor u\sigma \sqrt{n}\right\rfloor $ by this walk conditioned on $T>n$, the functional limit theorem on the convergence to the local time of stopped Brownian meander is proved.
Keywords: conditioned Brownian motions, local time of conditioned Brownian motions, functional limit theorems.
@article{DM_2019_31_1_a1,
     author = {V. I. Afanasyev},
     title = {Functional limit theorem for the local time of stopped random walk},
     journal = {Diskretnaya Matematika},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_1_a1/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Functional limit theorem for the local time of stopped random walk
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 7
EP  - 20
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_1_a1/
LA  - ru
ID  - DM_2019_31_1_a1
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Functional limit theorem for the local time of stopped random walk
%J Diskretnaya Matematika
%D 2019
%P 7-20
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_1_a1/
%G ru
%F DM_2019_31_1_a1
V. I. Afanasyev. Functional limit theorem for the local time of stopped random walk. Diskretnaya Matematika, Tome 31 (2019) no. 1, pp. 7-20. http://geodesic.mathdoc.fr/item/DM_2019_31_1_a1/

[1] Afanasyev V.I., “Functional limit theorem for a stopped random walk attaining a high level”, Discrete Math. Appl., 27:5 (2017), 269–276 | DOI | DOI | MR | Zbl

[2] Hooghiemstra G., “Conditioned limit theorems for waiting-time processes of the M/G/1 queue”, J. Appl. Probab., 20:3 (1983), 675-688 | DOI | MR | Zbl

[3] Iglehart D.L., “On a functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 2:4 (1974), 608-619 | DOI | MR | Zbl

[4] Bolthausen E., “Functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 4:3 (1976), 480-485 | DOI | MR | Zbl

[5] Afanasev V.I., “Skhodimost k lokalnomu vremeni brounovskoi izviliny”, Diskretnaya matematika, 29:4 (2017), 28–40 | DOI | MR

[6] Billingsley P., Convergence of Probability Measures, New York: John Wiley Sons, 1968 | MR | Zbl

[7] Bulinski A.V., Shashkin A.P., Limit theorems for associated random fields and related systems, World Scientific, Singapore, 2007, 436 pp. | MR

[8] Borodin A.N., Stochastic Processes, Birkhäuser Basel, 2017, 626 pp. | MR | Zbl

[9] Borodin A.N., “On the asymptotic behavior of local times of recurrent random walks with finite variance”, Theory Probab. Appl., 26:4 (1982), 758–772 | DOI | MR | Zbl | Zbl

[10] Takacs L., “Brownian local times”, J. Appl. Math. and Stoch. Anal., 8:3 (1995), 209-232 | DOI | MR | Zbl