Functional limit theorem for the local time of stopped random walk
Diskretnaya Matematika, Tome 31 (2019) no. 1, pp. 7-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Integer random walk $\left\{ S_{n},\,n\geq 0\right\} $ with zero drift and finite variance $\sigma ^{2}$ stopped at the moment $T$ of the first visit to the half axis $\left( -\infty ,0\right] $ is considered. For the random process which associates the variable $u\geq 0$ with the number of visits the state $\left\lfloor u\sigma \sqrt{n}\right\rfloor $ by this walk conditioned on $T>n$, the functional limit theorem on the convergence to the local time of stopped Brownian meander is proved.
Keywords: conditioned Brownian motions, local time of conditioned Brownian motions, functional limit theorems.
@article{DM_2019_31_1_a1,
     author = {V. I. Afanasyev},
     title = {Functional limit theorem for the local time of stopped random walk},
     journal = {Diskretnaya Matematika},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_1_a1/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Functional limit theorem for the local time of stopped random walk
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 7
EP  - 20
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_1_a1/
LA  - ru
ID  - DM_2019_31_1_a1
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Functional limit theorem for the local time of stopped random walk
%J Diskretnaya Matematika
%D 2019
%P 7-20
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_1_a1/
%G ru
%F DM_2019_31_1_a1
V. I. Afanasyev. Functional limit theorem for the local time of stopped random walk. Diskretnaya Matematika, Tome 31 (2019) no. 1, pp. 7-20. http://geodesic.mathdoc.fr/item/DM_2019_31_1_a1/