Classification of distance-transitive orbital graphs of overgroups of the Jevons group
Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 66-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Jevons group $A{\tilde S_n}$ is an isometry group of the Hamming metric on the $n$-dimensional vector space ${V_n}$ over $GF(2)$. It is generated by the group of all permutation $(n \times n)$-matrices over $GF(2)$ and the translation group on ${V_n}$. Earlier the authors of the present paper classified the submetrics of the Hamming metric on ${V_n}$ for $n \geqslant 4$, and all overgroups of $A{\tilde S_n}$ which are isometry groups of these overmetrics. In turn, each overgroup of $A{\tilde S_n}$ is known to define orbital graphs whose “natural” metrics are submetrics of the Hamming metric. The authors also described all distance-transitive orbital graphs of overgroups of the Jevons group $A{\tilde S_n}$. In the present paper we classify the distance-transitive orbital graphs of overgroups of the Jevons group. In particular, we show that some distance-transitive orbital graphs are isomorphic to the following classes: the complete graph ${K_{{2^n}}}$, the complete bipartite graph ${K_{{2^{n - 1}}{{,2}^{n - 1}}}}$, the halved $(n + 1)$-cube, the folded $(n + 1)$-cube, the graphs of alternating forms, the Taylor graph, the Hadamard graph, and incidence graphs of square designs.
Keywords: orbital graph, the Jevons group, distance-transitive graphs, Hamming graph, Taylor graph, Hadamard graph.
@article{DM_2018_30_4_a6,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Classification of distance-transitive orbital graphs of overgroups of the {Jevons} group},
     journal = {Diskretnaya Matematika},
     pages = {66--87},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_4_a6/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Classification of distance-transitive orbital graphs of overgroups of the Jevons group
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 66
EP  - 87
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_4_a6/
LA  - ru
ID  - DM_2018_30_4_a6
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Classification of distance-transitive orbital graphs of overgroups of the Jevons group
%J Diskretnaya Matematika
%D 2018
%P 66-87
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_4_a6/
%G ru
%F DM_2018_30_4_a6
B. A. Pogorelov; M. A. Pudovkina. Classification of distance-transitive orbital graphs of overgroups of the Jevons group. Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 66-87. http://geodesic.mathdoc.fr/item/DM_2018_30_4_a6/

[1] Povarov G.N., “O gruppovoi invariantnosti bulevykh funktsii.”, V sb. Primenenie logiki v nauke i tekhnike, AN SSSR, M., 1961, 263–340

[2] Bannai E., Ito. T., Algebraic Combinatorics, The Bejamin/Commings Publ. Comp., 1984 | MR | Zbl

[3] Pogorelov B.A., “Podmetriki metriki Khemminga i teorema A.A. Markova”, Trudy po diskretnoi matematike, 9 (2006), 190–219

[4] Pogorelov B.A., Pudovkina M.A., “Podmetriki metriki Khemminga i preobrazovaniya, rasprostranyayuschie iskazheniya v zadannoe chislo raz”, Trudy po diskretnoi matematike, 10 (2007), 202–238

[5] Pogorelov B.A., Pudovkina M.A., “Podmetriki Khemminga i ikh gruppy izometrii”, Trudy po diskretnoi matematike, 11:2 (2008), 32–68

[6] Pogorelov B.A., Pudovkina M.A., “Svoistva grafov orbitalov nadgrupp gruppy Dzhevonsa”, Matematicheskie voprosy kriptografii, 1:1 (2010), 55–84 | DOI

[7] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, 1989 | MR | Zbl

[8] van Bon J., “Finite primitive distance-transitive graphs”, Eur. J. Comb., 28 (2007), 517–532 | DOI | MR | Zbl

[9] Ivanov A.A., “Distance-transitive graphs and their classification”, Investigations in algebraic theory of combinatorial objects, 1994, 283–378 | DOI | MR | Zbl

[10] Liebeck M.W., Saxl J., “The finite primitive permutation groups of rank three”, Bull. London Math. Soc., 18 (1986), 165–172 | DOI | MR | Zbl

[11] Praeger C.E., Saxl J., Yokoyama K., “Distance transitive graphs and finite simple groups”, Proc. London Math. Soc, 55 (1987), 1–21 | DOI | MR | Zbl

[12] Cohen A.M., “Distance-transitive graphs”, Encyclopedia of mathematics and its applications, 102, Cambridge University Press, 2004, 222–249 | Zbl

[13] Smith D.H., “Primitive and imprimitive graphs”, Quart. J. Math. Oxford, 22:2 (1971), 551–557 | DOI | MR | Zbl