Orthomorphisms of Abelian groups with minimum possible pairwise distances
Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 55-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

Orthomorphisms of Abelian groups with the minimum possible Cayley distance between them are studied. We describe the class of transformations mapping the given orthomorphism into the set of all orthomorphisms such that their Cayley distance from this orthomorphism takes the minimal possible value 2. Algorithms are suggested that construct all orthomorphisms separated from the given one by the minimum possible distance, and the complexity of these algorithms is estimated. Examples of Abelian groups are presented such that the set of all their orthomorphisms contains elements which are separated from all other orthomorphisms by a distance larger than the minimum possible.
Keywords: orthomorphism, Abelian group, Latin square, orthogonal Latin squares, Cayley distance, quasigroup, $s$-box, nonlinear transformation, permutation.
@article{DM_2018_30_4_a5,
     author = {A. V. Menyachikhin},
     title = {Orthomorphisms of {Abelian} groups with minimum possible pairwise distances},
     journal = {Diskretnaya Matematika},
     pages = {55--65},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_4_a5/}
}
TY  - JOUR
AU  - A. V. Menyachikhin
TI  - Orthomorphisms of Abelian groups with minimum possible pairwise distances
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 55
EP  - 65
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_4_a5/
LA  - ru
ID  - DM_2018_30_4_a5
ER  - 
%0 Journal Article
%A A. V. Menyachikhin
%T Orthomorphisms of Abelian groups with minimum possible pairwise distances
%J Diskretnaya Matematika
%D 2018
%P 55-65
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_4_a5/
%G ru
%F DM_2018_30_4_a5
A. V. Menyachikhin. Orthomorphisms of Abelian groups with minimum possible pairwise distances. Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 55-65. http://geodesic.mathdoc.fr/item/DM_2018_30_4_a5/

[1] Glukhov M.M., “O metodakh postroeniya sistem ortogonalnykh kvazigrupp s ispolzovaniem grupp”, Matematicheskie voprosy kriptografii, 2:4 (2011), 5–24 | DOI

[2] Glukhov M.M., “O primeneniyakh kvazigrupp v kriptografii”, Prikl. diskret. matem., 2:2 (2008), 28–32

[3] Zubov A.Yu, Matematika kodov autentifikatsii, Gelios ARV, M., 2007, 480 pp.

[4] Menyachikhin A.V., “Spektralno-lineinyi i spektralno-differentsialnyi metody postroeniya $S$-boksov s blizkimi k optimalnym znacheniyami kriptograficheskikh parametrov”, Matematicheskie voprosy kriptografii, 8:2 (2017), 97–116 | DOI | MR

[5] Menyachikhin A.V., Ustroistvo dlya postroeniya ortomorfizmov, ispolzuyuschee parnye raznosti, Patent na izobretenie No 2632119 RF, 33, 2017

[6] Trishin A.E., “O pokazatele nelineinosti kusochno-lineinykh podstanovok additivnoi gruppy polya $F_{2^{n} } $”, Prikl. diskretn. matem., 4:30 (2015), 32–42

[7] Trishin A.E., “Sposob postroeniya ortogonalnykh latinskikh kvadratov na osnove podstanovochnykh dvuchlenov konechnykh polei”, Obozr. prikl. i promyshl. matem., 15:4 (2008), 764–765

[8] Tuzhilin M.E., “Latinskie kvadraty i ikh primenenie v kriptografii”, Prikl. diskretn. matem. Prilozhenie, 3:17 (2012), 47–52

[9] Cheremushkin A.V., Kriptograficheskie protokoly. Osnovnye svoistva i uyazvimosti, Izd. tsentr «Akademiya», Moskva, 2009, 272 pp.

[10] Buchheim C., Cameron P.J., Wu T., “On the subgroup distance problem”, Electr. Colloq. Comput. Compl., 146 (2006)

[11] Daemen J., “Limitations of the Even–Mansour construction”, ASIACRYPT'91, Lect. Notes Comput. Sci., 739, 1991, 495–498 | DOI

[12] Denes J., Keedwell A. D., Latin squares and their applications, Academiai Kiado, Budapest, 2015, 545 pp. | MR

[13] Dinur I., Dunkelman O., Keller N., Shamir A., Key recovery attacks on 3-round Even–Mansour, 8-step LED-128, and full AES , 2013 http://eprint.iacr.org/2013/391 | MR

[14] Evans A., Orthomorphisms graphs and groups, Springer-Verlag, Berlin, 1992 | MR

[15] Evans A., “Applications of complete mappings and orthomorphisms of finite groups”, Quasigroups and relat. syst., 23 (2015), 5–30 | MR | Zbl

[16] Even E. Mansour Y., “A construction of a cipher from a single pseudorandom permutation”, ASIACRYPT'91, Lect. Notes Comput. Sci., 739, 1991, 210–224 | DOI | MR

[17] Gligoroski D., Markovski S., Kocarev L., “Edon-R: An infinite family of cryptographic hash functions”, Int. J. Network Secur., 8:3 (2009), 293–300

[18] Johnson D.M., Dulmage A.L. and Mendelsohn N.S., “Orthomorphisms of groups and orthogonal Latin squares I”, Canad. J. Math., 13 (1961), 356–372 | DOI | MR | Zbl

[19] Mann H.B., “On orthogonal Latin squares”, Bull. Amer. Math. Soc., 50 (1944), 249–257 | DOI | MR | Zbl

[20] Niederreiter H., Robinson K., “Bol loops of order pq”, Math. Proc. Cambr. Phil. Soc., 89 (1981), 241–256 | DOI | MR | Zbl

[21] Niederreiter H., Robinson K., “Complete mappings of finite fields”, J. Austral. Math. Soc. Ser., 33 (1982), 197–212 | DOI | MR | Zbl

[22] Nikolic I., Wang L., Wu S., “Cryptoanalysis of round-reduce LED”, FSE'2013, Lect. Notes Comput. Sci., 8424, 2013, 112–130 | DOI

[23] Paige L.J., “A note on finite Abelian groups”, Bull. Amer. Math. Soc., 53 (1947), 590–593 | DOI | MR | Zbl

[24] Pinch R.G.E., “The distance of permutation from a subgroup of $S_{n} $”, Combinatorics and Probability, Cambridge Univ. Press, 2006, 473–479 | MR