On the $\Delta$-equivalence of Boolean functions
Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 29-40
Voir la notice de l'article provenant de la source Math-Net.Ru
A new equivalence relation on the set of Boolean functions is introduced: functions are declared to be $\Delta$-equivalent if their autocorrelation functions are equal. It turns out that this classification agrees well with the cryptographic properties of Boolean functions: for functions belonging to the same $\Delta $-equivalence class a number of their cryptographic characteristics do coincide. For example, all bent-functions (of a fixed number of variables) make up one class.
Keywords:
Boolean function, discrete Fourier transform, Walsh–Hadamard transform, cross-correlation, autocorrelation, nonlinearity, curvature, correlation immunity, propagation criterion, global avalanche characteristics.
@article{DM_2018_30_4_a2,
author = {O. A. Logachev and S. N. Fedorov and V. V. Yashchenko},
title = {On the $\Delta$-equivalence of {Boolean} functions},
journal = {Diskretnaya Matematika},
pages = {29--40},
publisher = {mathdoc},
volume = {30},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2018_30_4_a2/}
}
O. A. Logachev; S. N. Fedorov; V. V. Yashchenko. On the $\Delta$-equivalence of Boolean functions. Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 29-40. http://geodesic.mathdoc.fr/item/DM_2018_30_4_a2/