On the $\Delta$-equivalence of Boolean functions
Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 29-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new equivalence relation on the set of Boolean functions is introduced: functions are declared to be $\Delta$-equivalent if their autocorrelation functions are equal. It turns out that this classification agrees well with the cryptographic properties of Boolean functions: for functions belonging to the same $\Delta $-equivalence class a number of their cryptographic characteristics do coincide. For example, all bent-functions (of a fixed number of variables) make up one class.
Keywords: Boolean function, discrete Fourier transform, Walsh–Hadamard transform, cross-correlation, autocorrelation, nonlinearity, curvature, correlation immunity, propagation criterion, global avalanche characteristics.
@article{DM_2018_30_4_a2,
     author = {O. A. Logachev and S. N. Fedorov and V. V. Yashchenko},
     title = {On the $\Delta$-equivalence of {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_4_a2/}
}
TY  - JOUR
AU  - O. A. Logachev
AU  - S. N. Fedorov
AU  - V. V. Yashchenko
TI  - On the $\Delta$-equivalence of Boolean functions
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 29
EP  - 40
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_4_a2/
LA  - ru
ID  - DM_2018_30_4_a2
ER  - 
%0 Journal Article
%A O. A. Logachev
%A S. N. Fedorov
%A V. V. Yashchenko
%T On the $\Delta$-equivalence of Boolean functions
%J Diskretnaya Matematika
%D 2018
%P 29-40
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_4_a2/
%G ru
%F DM_2018_30_4_a2
O. A. Logachev; S. N. Fedorov; V. V. Yashchenko. On the $\Delta$-equivalence of Boolean functions. Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 29-40. http://geodesic.mathdoc.fr/item/DM_2018_30_4_a2/

[1] Alekseev E. K., “O nekotorykh merakh nelineinosti bulevykh funktsii”, Prikl. diskr. matem., 2011, no. 2 (12), 5–16

[2] Alekseev E. K., Karelina E. K., “Classification of correlation-immune and minimal correlation-immune Boolean functions of 4 and 5 variables”, Discrete Math. Appl., 25:4 (2015), 193–202 | DOI | DOI | MR | MR | Zbl

[3] de la Cruz Jimenez R. A., Kamlovskiy O. V., “The sum of modules of Walsh coefficients of Boolean functions”, Discrete Math. Appl., 26:5 (2016), 259–272 | DOI | MR | Zbl

[4] Kamlovskii O. V., “Summy modulei koeffitsientov Uolsha"– Adamara nekotorykh sbalansirovannykh bulevykh funktsii”, Matematicheskie voprosy kriptografii, 8:4 (2017), 75–98 | DOI | MR

[5] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, LENAND, M., 2015, 576 pp.

[6] Logachev O. A., Fedorov S. N., Yaschenko V. V., “Bulevy funktsii kak tochki na gipersfere v evklidovom prostranstve”, Diskretnaya matematika, 30:1 (2018), 39–55 | DOI | MR

[7] MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes. Parts I, II., North-Holland, Amsterdam, 1977 | MR | Zbl

[8] Cheremushkin A. V., “Lineinaya i affinnaya klassifikatsiya diskretnykh funktsii (obzor publikatsii)”, Matematicheskie voprosy kibernetiki, 2005, no. 14, 261–280 | Zbl

[9] O'Donnell R., Analysis of Boolean Functions, Cambridge Univ. Press, 2014, 417 pp. | MR | Zbl

[10] Rothaus O. S., “On ‘Bent’ Functions”, J. Comb. Theory (A), 20:3 (1976), 300–305 | DOI | MR | Zbl

[11] Terras A., Fourier Analysis on Finite Groups and Applications., Cambridge Univ. Press, 1999, 442 pp. | MR | Zbl

[12] Zhou Y., Xie M., Xiao G. Z., “On the global avalanche characteristics between two Boolean functions and the higher order nonlinearity”, Inf. Sci., 180:2 (2010), 256–265 | DOI | MR | Zbl