On a method of synthesis of correlation-immune Boolean functions
Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 12-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

An efficient recursive method for synthesis of correlation-immune Boolean functions is proposed. At the first stage, this method uses minimal correlation-immune functions. A classification of 6-variable minimal correlation-immune functions under the Jevons group is put forward. New results on minimal correlation-immune functions are given.
Keywords: correlation-immune functions, minimal correlation-immune functions, classification.
@article{DM_2018_30_4_a1,
     author = {E. K. Karelina},
     title = {On a method of synthesis of correlation-immune {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {12--28},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_4_a1/}
}
TY  - JOUR
AU  - E. K. Karelina
TI  - On a method of synthesis of correlation-immune Boolean functions
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 12
EP  - 28
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_4_a1/
LA  - ru
ID  - DM_2018_30_4_a1
ER  - 
%0 Journal Article
%A E. K. Karelina
%T On a method of synthesis of correlation-immune Boolean functions
%J Diskretnaya Matematika
%D 2018
%P 12-28
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_4_a1/
%G ru
%F DM_2018_30_4_a1
E. K. Karelina. On a method of synthesis of correlation-immune Boolean functions. Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 12-28. http://geodesic.mathdoc.fr/item/DM_2018_30_4_a1/

[1] Alekseev E. K., “On some algebraic and combinatorial properties of correlation-immune Boolean functions”, Discrete Math. Appl., 20:4 (2010), 421–439 | DOI | DOI | MR | Zbl

[2] Alekseev E. K., Karelina E. K., “Classification of correlation-immune and minimal correlation-immune Boolean functions of 4 and 5 variables”, Discrete Math. Appl., 25:4 (2015), 193–202 | DOI | DOI | MR | MR | Zbl

[3] Logachev O.A., Salnikov A.A., Smyshlyaev S.V., Yaschenko V.V., Bulevy funktsii v teorii kodirovaniya i kriptologii, Lenand, M., 2015, 576 pp.

[4] Tarannikov Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matematicheskie voprosy kibernetiki, 11 (2002), 91–148 | MR | Zbl

[5] Tarannikov Yu. V., Kombinatornye svoistva diskretnykh struktur i prilozheniya k kriptologii, MTsNMO, M., 2011, 152 pp.

[6] Alekseev E.K., Karelina E.K., Logachev O.A., “On construction of correlation-immune functions via minimal functions”, Matematicheskie voprosy kriptografii, 9:2 (2018), 7–21 | DOI

[7] Braeken A., Borissov Y., Nikova S., Preneel B., “Classification of Boolean functions of 6 variables or less with respect to cryptographic properties”, ICALP, 2005 (2005), 324–334 | MR | Zbl

[8] Brier E., Langevin P., “Classification of Boolean cubic forms of nine variables”, IEEE Inf. Theory Workshop (ITW 2003), 2003, 179–182

[9] Harrison M.A., “On the classification of Boolean functions by the general linear and affine group”, J. SIAM, 12 (1964), 284–299 | MR

[10] Maiorana J., “A classification of the cosets of the Reed-Muller code $R(1,6)$”, Math. Comput., 57:195 (1991), 403–414 | MR | Zbl

[11] Siegenthaler T., “Decrypting a class of stream cipher using ciphertext only”, IEEE Trans. on Computers, 34:1 (1985), 81–85 | DOI