The complexity of checking the polynomial completeness of finite quasigroups
Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The complexity of the decision of polynomial (functional) completeness of a finite quasigroup is investigated. It is shown that the polynomial completeness of a finite quasigroup may be checked in time polynomially dependent on the order of the quasigroup.
Keywords: quasigroup, Latin square, polynomial completeness.
@article{DM_2018_30_4_a0,
     author = {A. V. Galatenko and A. E. Pankratiev},
     title = {The complexity of checking the polynomial completeness of finite quasigroups},
     journal = {Diskretnaya Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_4_a0/}
}
TY  - JOUR
AU  - A. V. Galatenko
AU  - A. E. Pankratiev
TI  - The complexity of checking the polynomial completeness of finite quasigroups
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 3
EP  - 11
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_4_a0/
LA  - ru
ID  - DM_2018_30_4_a0
ER  - 
%0 Journal Article
%A A. V. Galatenko
%A A. E. Pankratiev
%T The complexity of checking the polynomial completeness of finite quasigroups
%J Diskretnaya Matematika
%D 2018
%P 3-11
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_4_a0/
%G ru
%F DM_2018_30_4_a0
A. V. Galatenko; A. E. Pankratiev. The complexity of checking the polynomial completeness of finite quasigroups. Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 3-11. http://geodesic.mathdoc.fr/item/DM_2018_30_4_a0/

[1] A. V. Galatenko, A. E. Pankratev, S. B. Rodin, “O polinomialno polnykh kvazigruppakh prostogo poryadka”, Algebra i logika, prinyato k pechati | MR

[2] M. M. Glukhov, “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2008, no. 2, 28–32

[3] V. L. Yugai, “Ob odnom kriterii polinomialnoi polnoty kvazigrupp”, Intellektualnye sistemy. Teoriya i prilozheniya, 21:3 (2017), 131–135

[4] V. A. Artamonov, S. Chakrabarti, S. K. Pal, “Characterizations of highly non-associative quasigroups and associative triples”, Quasigroups and Related Systems, 25 (2017), 1–19 | MR | Zbl

[5] V. A. Artamonov, S. Chakrabarti, S. Gangopadhyay, S. K. Pal, “On Latin squares of polynomially complete quasigroups and quasigroups generated by shifts”, Quasigroups and Related Systems, 21 (2013), 117–130 | MR | Zbl

[6] J. Hagemann, C. Herrmann, “Arithmetical locally equational classes and representation of partial functions”, Universal Algebra, Esztergom (Hungary), 29 (1982), 345–360 | MR | Zbl

[7] G. Horváth, Gh. L. Nehaniv, Cs. Szabó, “An assertion concerning functionally complete algebras and NP-completeness”, Acta Sci. Math. (Szeged), 76 (2010), 35–48 | MR | Zbl

[8] D. Knuth, The Art of Computer Programming, v. 2, Seminumerical Algorithms, 3, Addison-Wesley, 2008 | MR

[9] D. Lau, Function algebras on finite sets: a basic course on many-valued logic and clone theory, Springer, 2006 | MR | Zbl