Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups
Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 117-126

Voir la notice de l'article provenant de la source Math-Net.Ru

A family $(A_1,\dots,A_k)$ of subsets of a group $G$ is called $k$-solution-free family if the equation $x_1+\dots+x_k=0$ has no solution in $(A_1,\dots,A_k)$ such that $x_1\in A_1,\dots,x_k\in A_k$. We find the asymptotic behavior for the logarithm of the number of $k$-solution-free families in Abelian groups.
Keywords: set, characteristic function, group, progression, coset.
@article{DM_2018_30_3_a9,
     author = {A. A. Sapozhenko and V. G. Sargsyan},
     title = {Asymptotics for the logarithm of the number of $k$-solution-free sets in {Abelian} groups},
     journal = {Diskretnaya Matematika},
     pages = {117--126},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a9/}
}
TY  - JOUR
AU  - A. A. Sapozhenko
AU  - V. G. Sargsyan
TI  - Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 117
EP  - 126
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_3_a9/
LA  - ru
ID  - DM_2018_30_3_a9
ER  - 
%0 Journal Article
%A A. A. Sapozhenko
%A V. G. Sargsyan
%T Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups
%J Diskretnaya Matematika
%D 2018
%P 117-126
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_3_a9/
%G ru
%F DM_2018_30_3_a9
A. A. Sapozhenko; V. G. Sargsyan. Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 117-126. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a9/