Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2018_30_3_a9, author = {A. A. Sapozhenko and V. G. Sargsyan}, title = {Asymptotics for the logarithm of the number of $k$-solution-free sets in {Abelian} groups}, journal = {Diskretnaya Matematika}, pages = {117--126}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a9/} }
TY - JOUR AU - A. A. Sapozhenko AU - V. G. Sargsyan TI - Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups JO - Diskretnaya Matematika PY - 2018 SP - 117 EP - 126 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2018_30_3_a9/ LA - ru ID - DM_2018_30_3_a9 ER -
A. A. Sapozhenko; V. G. Sargsyan. Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 117-126. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a9/
[1] Cameron P. J., Erdös P., “On the number of sets of integers with various properties”, J. Number Theory, 1990, 61–79 | MR | Zbl
[2] Calkin N. J., “On the number of sum-free set”, Bull. London Math. Soc., 22 (1990), 140–144 | DOI | MR
[3] Alon N., “Independent sets in regular graphs and sum-free subsets of abelian groups”, Israel J. Math., 73 (1991), 247–256 | DOI | MR | Zbl
[4] Sapozhenko A. A., “Gipoteza Kamerona–Erdësha”, Dokl. RAN, 393:6 (2003), 749–752 | MR
[5] Green B., “The Cameron–Erdös conjecture”, Bull. London Math. Soc., 36:6 (2004), 769–778 | DOI | MR | Zbl
[6] Sapozhenko A. A., “O chisle mnozhestv, svobodnykh ot summ, v abelevykh gruppakh”, Vestn. Mosk. un-ta, ser. Matem., Mekh., 4 (2002), 14–17 | MR | Zbl
[7] Lev V. F., Luczak T., Schoen T., “Sum-free sets in abelian groups”, Israel J. Math., 125 (2001), 347–367 | DOI | MR | Zbl
[8] Lev V. F., Schoen T., “Cameron–Erdös modulo a prime”, Finite Fields Appl., 8:1 (2002), 108–119 | DOI | MR | Zbl
[9] Green, B., Ruzsa, I., “Sum-free sets in abelian groups”, Israel J. Math., 147 (2005), 157–188 | DOI | MR | Zbl
[10] Sapozhenko A. A., “Reshenie problemy Kamerona–Erdësha dlya grupp prostogo poryadka”, Vychisl. matem. i matem. fizika, 49:8 (2009), 1–7
[11] Calkin N. J., Taylor A. C., “Counting sets of integers, no $k$ of which sum to another”, J. Number Theory, 57 (1996), 323–327 | DOI | MR | Zbl
[12] Bilu, Yu., “Sum-free sets and related sets”, Combinatorica, 18:4 (1998), 449–459 | DOI | MR | Zbl
[13] Calkin N. J., Thomson J. M., “Counting generalized sum-free sets”, J. Number Theory, 68 (1998), 151–160 | DOI | MR
[14] Schoen T., “A note on the number of $(k,l)$-sum-free sets”, Electr. J. Combinatorics, 17:1 (2000), 1–8 | MR
[15] Lev V. F., “Sharp estimates for the number of sum-free sets”, J. fur die reine und angew. Math., 555 (2003), 1–25 | MR | Zbl
[16] Sargsyan V. G., “Asimptotika logarifma chisla mnozhestv, $(k,l)$-svobodnykh ot summ v abelevoi gruppe”, Diskretnaya matematika, 26:4 (2014), 91–99 ; Sargsyan V. G., “Asymptotics of the logarithm of the number of $(k, l)$-sum-free sets in an Abelian group”, Discrete Math. Appl., 25:2 (2015), 93–99 | DOI | DOI | MR | Zbl
[17] Green B., “A Szemerédi-type regularity lemma in abelian groups”, Geom. $\$ Funct. Anal., 15:2 (2005), 340–376 | DOI | MR | Zbl