Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups
Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 117-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family $(A_1,\dots,A_k)$ of subsets of a group $G$ is called $k$-solution-free family if the equation $x_1+\dots+x_k=0$ has no solution in $(A_1,\dots,A_k)$ such that $x_1\in A_1,\dots,x_k\in A_k$. We find the asymptotic behavior for the logarithm of the number of $k$-solution-free families in Abelian groups.
Keywords: set, characteristic function, group, progression, coset.
@article{DM_2018_30_3_a9,
     author = {A. A. Sapozhenko and V. G. Sargsyan},
     title = {Asymptotics for the logarithm of the number of $k$-solution-free sets in {Abelian} groups},
     journal = {Diskretnaya Matematika},
     pages = {117--126},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a9/}
}
TY  - JOUR
AU  - A. A. Sapozhenko
AU  - V. G. Sargsyan
TI  - Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 117
EP  - 126
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_3_a9/
LA  - ru
ID  - DM_2018_30_3_a9
ER  - 
%0 Journal Article
%A A. A. Sapozhenko
%A V. G. Sargsyan
%T Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups
%J Diskretnaya Matematika
%D 2018
%P 117-126
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_3_a9/
%G ru
%F DM_2018_30_3_a9
A. A. Sapozhenko; V. G. Sargsyan. Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 117-126. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a9/

[1] Cameron P. J., Erdös P., “On the number of sets of integers with various properties”, J. Number Theory, 1990, 61–79 | MR | Zbl

[2] Calkin N. J., “On the number of sum-free set”, Bull. London Math. Soc., 22 (1990), 140–144 | DOI | MR

[3] Alon N., “Independent sets in regular graphs and sum-free subsets of abelian groups”, Israel J. Math., 73 (1991), 247–256 | DOI | MR | Zbl

[4] Sapozhenko A. A., “Gipoteza Kamerona–Erdësha”, Dokl. RAN, 393:6 (2003), 749–752 | MR

[5] Green B., “The Cameron–Erdös conjecture”, Bull. London Math. Soc., 36:6 (2004), 769–778 | DOI | MR | Zbl

[6] Sapozhenko A. A., “O chisle mnozhestv, svobodnykh ot summ, v abelevykh gruppakh”, Vestn. Mosk. un-ta, ser. Matem., Mekh., 4 (2002), 14–17 | MR | Zbl

[7] Lev V. F., Luczak T., Schoen T., “Sum-free sets in abelian groups”, Israel J. Math., 125 (2001), 347–367 | DOI | MR | Zbl

[8] Lev V. F., Schoen T., “Cameron–Erdös modulo a prime”, Finite Fields Appl., 8:1 (2002), 108–119 | DOI | MR | Zbl

[9] Green, B., Ruzsa, I., “Sum-free sets in abelian groups”, Israel J. Math., 147 (2005), 157–188 | DOI | MR | Zbl

[10] Sapozhenko A. A., “Reshenie problemy Kamerona–Erdësha dlya grupp prostogo poryadka”, Vychisl. matem. i matem. fizika, 49:8 (2009), 1–7

[11] Calkin N. J., Taylor A. C., “Counting sets of integers, no $k$ of which sum to another”, J. Number Theory, 57 (1996), 323–327 | DOI | MR | Zbl

[12] Bilu, Yu., “Sum-free sets and related sets”, Combinatorica, 18:4 (1998), 449–459 | DOI | MR | Zbl

[13] Calkin N. J., Thomson J. M., “Counting generalized sum-free sets”, J. Number Theory, 68 (1998), 151–160 | DOI | MR

[14] Schoen T., “A note on the number of $(k,l)$-sum-free sets”, Electr. J. Combinatorics, 17:1 (2000), 1–8 | MR

[15] Lev V. F., “Sharp estimates for the number of sum-free sets”, J. fur die reine und angew. Math., 555 (2003), 1–25 | MR | Zbl

[16] Sargsyan V. G., “Asimptotika logarifma chisla mnozhestv, $(k,l)$-svobodnykh ot summ v abelevoi gruppe”, Diskretnaya matematika, 26:4 (2014), 91–99 ; Sargsyan V. G., “Asymptotics of the logarithm of the number of $(k, l)$-sum-free sets in an Abelian group”, Discrete Math. Appl., 25:2 (2015), 93–99 | DOI | DOI | MR | Zbl

[17] Green B., “A Szemerédi-type regularity lemma in abelian groups”, Geom. $\$ Funct. Anal., 15:2 (2005), 340–376 | DOI | MR | Zbl