Keywords: Pólya theory, de Brouijn's theorem.
@article{DM_2018_30_3_a6,
author = {F. M. Malyshev},
title = {On affine classification of permutations on the space $GF(2)^3$},
journal = {Diskretnaya Matematika},
pages = {77--87},
year = {2018},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a6/}
}
F. M. Malyshev. On affine classification of permutations on the space $GF(2)^3$. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 77-87. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a6/
[1] Harrison M. A., “On the classification of Boolean functions by the general linear and affine groups”, J. SIAM, 12(2) (1964), 285–299 | MR | Zbl
[2] Lorens C. S., “Invertible Boolean functions”, IEEE Trans. Electr. Comput., EC-13(5) (1964), 529–541 | DOI | MR | Zbl
[3] Biryukov A., De Canniere C., Braeken A., Preneel B., “A Toolbox for cryptanalysis: linear and affine equivalence algorithms”, EUROCRYPT 2003, Lect. Notes Comput. Sci., 2656, 2003, 33–50 | DOI | MR | Zbl
[4] De Canniere C., Analysis and design of symmetric encryption algorithms, Doct. diss., K.U. Leuven, 2007
[5] Polya G., “Kombinatorische Anzahlbestimmungen für Gruppen und chemische Verbindungen”, Acta Math., 68 (1937), 145–254 | DOI | MR
[6] Brëin de N. G., “Obzor obobschenii perechislitelnoi teoremy Poia”, Perechislitelnye zadachi kombinatornogo analiza, Mir, M., 1979, 229–255; Bruijn de N.G., “A survey of generalizations of Polya's enumeration theorem”, Nieuw Archief voor Wiskunde, XIX (1971), 89–112 | MR | Zbl
[7] Burnside W., Theory of groups of finite order, 2nd ed., Cambridge, 1911 | MR
[8] Sachkov V.N., Kombinatornye metody diskretnoi matematiki, M.: “Nauka”, 1977