Burnside-type problems in discrete geometry
Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 68-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with systems of incidence involving a space of points $X$ and lines consisting of $q$ points each. A free space $X$ is defined. For a space $X$ an analogue of the Burnside problem (solved in the negative) and an analogue of the weakened Burnside problem are formulated. In the case $q=3$ the positive answer to the analogue of the weakened Burnside problem is equivalent to the existence of a universal finite geometry.
Keywords: system of incidence, finite geometry, Burnside problem, weakened Burnside problem.
@article{DM_2018_30_3_a5,
     author = {L. V. Kuz'min},
     title = {Burnside-type problems in discrete geometry},
     journal = {Diskretnaya Matematika},
     pages = {68--76},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a5/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - Burnside-type problems in discrete geometry
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 68
EP  - 76
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_3_a5/
LA  - ru
ID  - DM_2018_30_3_a5
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T Burnside-type problems in discrete geometry
%J Diskretnaya Matematika
%D 2018
%P 68-76
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_3_a5/
%G ru
%F DM_2018_30_3_a5
L. V. Kuz'min. Burnside-type problems in discrete geometry. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 68-76. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a5/

[1] Petrov A. P., Kuzmin L. V., “Visual space geometry derived from occlusion axioms”, J. Math. Imaging and Vision, 6 (1996), 291–308 | DOI | MR

[2] Petrov A. P., “Hide-and-seek axioms and genesis of visual space”, Perception, 18 (1989), 505–506

[3] Dembowski P., Finite geometries, Springer, Bonn–New York, 1968, 375 pp. | MR | Zbl

[4] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975, 335 pp.

[5] Kostrikin A. I., Vokrug Bernsaida, Nauka, M., 1986, 231 pp. | MR

[6] Matematicheskaya entsiklopediya, v. 2, SE, M., 1979

[7] Burnside W., “On an unsettled question in the theory of discontinuous groups”, Quart J. Pure Appl. Math., 33 (1902), 230-238 | Zbl

[8] Kostrikin A. I., “O probleme Bernsaida”, Izv. AN SSSR, ser. matem., 23:1 (1959), 3-34 | MR | Zbl