Reduced critical Bellman--Harris branching processes for small populations
Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 25-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

A critical Bellman-Harris branching process $\left\{ Z(t), t\geq 0\right\} $ with finite variance of the offspring number is considered. Assuming that $0$, where either $\varphi (t)=o(t)$ as $t\rightarrow \infty $ or $\varphi (t)=at,\, a>0$, we study the structure of the process $ \left\{ Z(s,t),0\leq s\leq t\right\} ,$ where $Z(s,t)$ is the number of particles in the initial process at moment $s$ which either survive up to moment $t$ or have a positive number of descendants at this moment.
Keywords: Bellman-Harris branching process, reduced process, conditional limit theorem.
@article{DM_2018_30_3_a2,
     author = {V. A. Vatutin and W. Hong and Ya. Ji},
     title = {Reduced critical {Bellman--Harris} branching processes for small populations},
     journal = {Diskretnaya Matematika},
     pages = {25--39},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - W. Hong
AU  - Ya. Ji
TI  - Reduced critical Bellman--Harris branching processes for small populations
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 25
EP  - 39
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_3_a2/
LA  - ru
ID  - DM_2018_30_3_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A W. Hong
%A Ya. Ji
%T Reduced critical Bellman--Harris branching processes for small populations
%J Diskretnaya Matematika
%D 2018
%P 25-39
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_3_a2/
%G ru
%F DM_2018_30_3_a2
V. A. Vatutin; W. Hong; Ya. Ji. Reduced critical Bellman--Harris branching processes for small populations. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 25-39. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a2/

[1] Athreya K. B., “Coalescence in the recent past in rapidly growing populations”, Stoch. Proc. and their Appl., 122:11 (2012), 3757–3766 | DOI | MR | Zbl

[2] Athreya K. B., “Coalescence in critical and subcritical Galton-Watson branching processes”, J. Appl. Probab., 49:3 (2012), 627–638 | DOI | MR | Zbl

[3] Durrett R., “The genealogy of critical branching processes”, Stoch. Proc. and their Appl., 8:1 (1978), 101–116 | DOI | MR | Zbl

[4] Fleischmann K., Prehn U., “Ein Grenzfersatz für subkritische Verzweigungsprozesse mit eindlich vielen Typen von Teilchen”, Math. Nachr., 64 (1974), 233–241 | DOI | MR

[5] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton-Watson processes”, Math. Nachr., 79 (1977), 357–362 | DOI | MR

[6] Goldstein M., “Critical age-dependent branching processes: single and multitype”, Z. Wahrscheinlichkeitstheor. verw. Geb., 17:2 (1971), 74–78 | DOI | MR

[7] Harris S. C., Johnston S. G. G., Roberts M. I., The coalescent structure of continuous-time Galton-Watson trees, 2017, arXiv: 1703.00299

[8] Johnston S. G. G., Coalescence in supercritical and subcritical continuous-time Galton-Watson trees, 2017, arXiv: 1709.008500v1

[9] Lambert A., “Coalescence times for the branching process”, Adv. Appl. Probab., 35:4 (2003), 1071–1089 | DOI | MR | Zbl

[10] Le V., “Coalescence times for the Bienaymé-Galton-Watson process”, J. Appl. Probab., 51:1 (2014), 209–218 | DOI | MR | Zbl

[11] Liu M., Vatutin V., “Redutsirovannye protsessy dlya malykh populyatsii”, Teoriya veroyatnostei i ee primeneniya, 63:4 (2018) (to appear)

[12] Sagitov S.M., “Redutsirovannyi vetvyaschiisya protsess Bellmana–Kharrisa s neskolkimi tipami chastits”, Teoriya veroyatnostei i ee primeneniya, 30:4 (1986), 737–749 | Zbl

[13] Topchii V.A., “Lokalnaya predelnaya teorema dlya kriticheskikh protsessov Bellmana–Kharrisa s diskretnym vremenem”, Predelnye teoremy teorii veroyatnostei i smezhnye voprosy, Trudy Instituta Matematiki, 1, Nauka, Sibirskoe otdelenie, Novosibirsk, 1982, 97–122

[14] Vatutin V.A., “Diskretnye predelnye raspredeleniya chisla chastits v kriticheskikh protsessakh Bellmana–Kharrisa”, Teoriya veroyatnostei i ee primeneniya, 22:1 (1977), 150–155 | MR | Zbl

[15] Vatutin V.A., “Rasstoyanie do blizhaishego obschego predka v vtetvyaschikhsya protsessakh Bellmana–Kharrisa”, Matematicheskie Zametki, 25:5 (1979), 733–741 | MR | Zbl

[16] Vatutin V.A., “Lokalnaya predelnaya teorema dlya kriticheskikh protsessov Bellmana–Kharrisa”, Trudy MIAN, 158, 1981, 9–30 ; Vatutin V. A., “A local limit theorem for critical Bellman–Harris branching processes”, Proc. Steklov Inst. Math., 158, 1983, 9–31 | Zbl | MR | Zbl

[17] Zubkov A.M., “Predelnye raspredeleniya rasstoyaniya do blizhaishego obschego predka”, Teoriya veroyatnostei i ee primeneniya, 20:3 (1975), 614–623 ; Zubkov A. M., “Limit distributions of the distance to the nearest common ancestor”, Theory Probab. Appl., 20:3 (1976), 602–612 | MR | Zbl | DOI