Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2018_30_3_a2, author = {V. A. Vatutin and W. Hong and Ya. Ji}, title = {Reduced critical {Bellman--Harris} branching processes for small populations}, journal = {Diskretnaya Matematika}, pages = {25--39}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a2/} }
TY - JOUR AU - V. A. Vatutin AU - W. Hong AU - Ya. Ji TI - Reduced critical Bellman--Harris branching processes for small populations JO - Diskretnaya Matematika PY - 2018 SP - 25 EP - 39 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2018_30_3_a2/ LA - ru ID - DM_2018_30_3_a2 ER -
V. A. Vatutin; W. Hong; Ya. Ji. Reduced critical Bellman--Harris branching processes for small populations. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 25-39. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a2/
[1] Athreya K. B., “Coalescence in the recent past in rapidly growing populations”, Stoch. Proc. and their Appl., 122:11 (2012), 3757–3766 | DOI | MR | Zbl
[2] Athreya K. B., “Coalescence in critical and subcritical Galton-Watson branching processes”, J. Appl. Probab., 49:3 (2012), 627–638 | DOI | MR | Zbl
[3] Durrett R., “The genealogy of critical branching processes”, Stoch. Proc. and their Appl., 8:1 (1978), 101–116 | DOI | MR | Zbl
[4] Fleischmann K., Prehn U., “Ein Grenzfersatz für subkritische Verzweigungsprozesse mit eindlich vielen Typen von Teilchen”, Math. Nachr., 64 (1974), 233–241 | DOI | MR
[5] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton-Watson processes”, Math. Nachr., 79 (1977), 357–362 | DOI | MR
[6] Goldstein M., “Critical age-dependent branching processes: single and multitype”, Z. Wahrscheinlichkeitstheor. verw. Geb., 17:2 (1971), 74–78 | DOI | MR
[7] Harris S. C., Johnston S. G. G., Roberts M. I., The coalescent structure of continuous-time Galton-Watson trees, 2017, arXiv: 1703.00299
[8] Johnston S. G. G., Coalescence in supercritical and subcritical continuous-time Galton-Watson trees, 2017, arXiv: 1709.008500v1
[9] Lambert A., “Coalescence times for the branching process”, Adv. Appl. Probab., 35:4 (2003), 1071–1089 | DOI | MR | Zbl
[10] Le V., “Coalescence times for the Bienaymé-Galton-Watson process”, J. Appl. Probab., 51:1 (2014), 209–218 | DOI | MR | Zbl
[11] Liu M., Vatutin V., “Redutsirovannye protsessy dlya malykh populyatsii”, Teoriya veroyatnostei i ee primeneniya, 63:4 (2018) (to appear)
[12] Sagitov S.M., “Redutsirovannyi vetvyaschiisya protsess Bellmana–Kharrisa s neskolkimi tipami chastits”, Teoriya veroyatnostei i ee primeneniya, 30:4 (1986), 737–749 | Zbl
[13] Topchii V.A., “Lokalnaya predelnaya teorema dlya kriticheskikh protsessov Bellmana–Kharrisa s diskretnym vremenem”, Predelnye teoremy teorii veroyatnostei i smezhnye voprosy, Trudy Instituta Matematiki, 1, Nauka, Sibirskoe otdelenie, Novosibirsk, 1982, 97–122
[14] Vatutin V.A., “Diskretnye predelnye raspredeleniya chisla chastits v kriticheskikh protsessakh Bellmana–Kharrisa”, Teoriya veroyatnostei i ee primeneniya, 22:1 (1977), 150–155 | MR | Zbl
[15] Vatutin V.A., “Rasstoyanie do blizhaishego obschego predka v vtetvyaschikhsya protsessakh Bellmana–Kharrisa”, Matematicheskie Zametki, 25:5 (1979), 733–741 | MR | Zbl
[16] Vatutin V.A., “Lokalnaya predelnaya teorema dlya kriticheskikh protsessov Bellmana–Kharrisa”, Trudy MIAN, 158, 1981, 9–30 ; Vatutin V. A., “A local limit theorem for critical Bellman–Harris branching processes”, Proc. Steklov Inst. Math., 158, 1983, 9–31 | Zbl | MR | Zbl
[17] Zubkov A.M., “Predelnye raspredeleniya rasstoyaniya do blizhaishego obschego predka”, Teoriya veroyatnostei i ee primeneniya, 20:3 (1975), 614–623 ; Zubkov A. M., “Limit distributions of the distance to the nearest common ancestor”, Theory Probab. Appl., 20:3 (1976), 602–612 | MR | Zbl | DOI