Reduced critical Bellman--Harris branching processes for small populations
Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 25-39
Voir la notice de l'article provenant de la source Math-Net.Ru
A critical Bellman-Harris branching process $\left\{ Z(t), t\geq 0\right\} $ with finite variance of the offspring number is considered. Assuming that $0$, where either $\varphi (t)=o(t)$ as $t\rightarrow \infty $ or $\varphi (t)=at,\, a>0$, we study the structure of the process $ \left\{ Z(s,t),0\leq s\leq t\right\} ,$ where $Z(s,t)$ is the number of particles in the initial process at moment $s$ which either survive up to moment $t$ or have a positive number of descendants at this moment.
Keywords:
Bellman-Harris branching process, reduced process, conditional limit theorem.
@article{DM_2018_30_3_a2,
author = {V. A. Vatutin and W. Hong and Ya. Ji},
title = {Reduced critical {Bellman--Harris} branching processes for small populations},
journal = {Diskretnaya Matematika},
pages = {25--39},
publisher = {mathdoc},
volume = {30},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a2/}
}
TY - JOUR AU - V. A. Vatutin AU - W. Hong AU - Ya. Ji TI - Reduced critical Bellman--Harris branching processes for small populations JO - Diskretnaya Matematika PY - 2018 SP - 25 EP - 39 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2018_30_3_a2/ LA - ru ID - DM_2018_30_3_a2 ER -
V. A. Vatutin; W. Hong; Ya. Ji. Reduced critical Bellman--Harris branching processes for small populations. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 25-39. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a2/