On the distribution of multiple power series regularly varying at the boundary point
Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 141-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B(x)$ be a multiple power series with nonnegative coefficients which is convergent for all $x\in(0,1)^n$ and diverges at the point $\mathbf1=(1,\dots,1)$. Random vectors (r.v.) $\xi_x$ such that $\xi_x$ has distribution of the power series $B(x)$ type is studied. The integral limit theorem for r.v. $\xi_x$ as $x\uparrow\mathbf1$ is proved under the assumption that $B(x)$ is regularly varying at this point. Also local version of this theorem is obtained under the condition that the coefficients of the series $B(x)$ are one-sided weakly oscillating at infinity.
Keywords: Multiple power series distribution, weak convergence, $\sigma$-finite measures, gamma-distribution, regularly varying functions, one-sided weakly oscillating functions.
@article{DM_2018_30_3_a11,
     author = {A. L. Yakymiv},
     title = {On the distribution of multiple power series regularly varying at the boundary point},
     journal = {Diskretnaya Matematika},
     pages = {141--158},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a11/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - On the distribution of multiple power series regularly varying at the boundary point
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 141
EP  - 158
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_3_a11/
LA  - ru
ID  - DM_2018_30_3_a11
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T On the distribution of multiple power series regularly varying at the boundary point
%J Diskretnaya Matematika
%D 2018
%P 141-158
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_3_a11/
%G ru
%F DM_2018_30_3_a11
A. L. Yakymiv. On the distribution of multiple power series regularly varying at the boundary point. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 141-158. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a11/

[1] Bajašanski B., Karamata J., “Regularly varying functions and the principle of equicontinuity”, Publ. Ramanujan Inst., 1, 1968/69, 235–246 | MR

[2] Bingham N.H., Goldie C.M., Teugels J.L., Regular variation, Cambridge Univ. Press, 1987, 494 pp. | MR | Zbl

[3] Diamond Ph., “Slowly varying functions of two varibles and a Tauberian theorem for the double Laplace transform”, Appl. Anal., 23 (1987), 301–318 | DOI | MR | Zbl

[4] Karamata J., “Sur un mode croissanse régulière des fonctions”, Mathematica (Cluj.), 4 (1930), 38-53 | Zbl

[5] Kolchin V. F., “Odin klass predelnykh teorem dlya uslovnykh raspredelenii”, Lit. matem. sb., 8:1 (1968), 111–126

[6] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 208 pp.; Kolchin V. F., Random mappings, Optimization Software Inc. Publ. Divis., New York, 1986, 207 pp. | MR | Zbl

[7] Kolchin V. F., Sluchainye grafy, Fizmatlit, M., 2000, 256 pp.; Kolchin V. F., Random Graphs, Cambridge University Press, 1998, 268 pp. | MR

[8] Omey E., Multivariate regular variation and application in probability theory, Brussel, 1989

[9] Ostrogorski T., “Regular variation on homogeneous cones”, Slobodan Aljančić. Publ. Inst. Math., 58(72) (1995), 51-70 | MR | Zbl

[10] Ostrogorski T., “Regular variation in $ R\sp n\sb +$”, Mathematica, 39(62):2 (1997), 265–276 | MR | Zbl

[11] Ostrogorski T., “Regular variation on the light cone”, Proc. Int. Workshop in Anal. and its Appl., Mathematica Moravica, 1977, 71–84

[12] Ostrogorski T., “Regular variation and Banach–Steinhaus theorem”, Nieuw Arch. Wisk., 4 (16):1-2 (1998), 27–36 | MR

[13] Postnikov A.G., Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971 ; Postnikov A. G., Introduction to Analytic Number Theory, Transl. Math. Monogr. (Book 68), American Mathematical Society, 1988, 320 pp. | MR | DOI | MR | Zbl

[14] Resnick S., Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer, New York, 2007 | MR | Zbl

[15] Resnick S., “Multivariate regular variation on cones: application to extreme values, hidden regular variation and conditioned limit laws”, IMS Lecture Notes-Monograph Series, Stochastics, 80:2-3 (2008), 269-298 | DOI | MR | Zbl

[16] Resnick S., Samorodnitsky G., “Tauberian theory for multivariate regularly varying distributions with application to preferential attachment networks”, Extremes, 207:3 (2015), 349–367 | DOI | MR

[17] Resnick S., Samorodnitsky G., Towsley D., Davis R., Willis A., Wan P., “Nonstandard regular variation of in-degree and out-degree in the preferential attachment model”, J. Appl. Probab., 53:1 (2016), 146–161 | DOI | MR | Zbl

[18] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985; Seneta E., Regularly Varying Functions, Lect. Notes Math., 508, 1976, 116 pp. | DOI | MR | Zbl

[19] Timashev A.N., Raspredeleniya tipa stepennogo ryada i obobschënnaya skhema razmescheniya, Akademiya, M., 2016

[20] Timashëv A. N., “Predelnye teoremy dlya raspredelenii tipa stepennogo ryada s konechnym radiusom skhodimosti”, Teoriya veroyatn. i ee primen., 63:1 (2018), 57–69 | DOI | MR

[21] Yakymiv A.L., Veroyatnostnye prilozheniya tauberovykh teorem, Fizmatlit, M, 2005

[22] Yakymiv A. L., “Predelnaya teorema dlya srednikh chlenov variatsionnogo ryada dlin tsiklov sluchainoi $A$-podstanovki”, Teoriya veroyatn. i ee primen., 54:1 (2009), 63–79 ; Yakymiv A. L., “Limit theorem for the middle members of ordered cycle lengths in random $A$-permutations”, Theory Probab. Appl., 54:1 (2010), 114–128 | DOI | MR | Zbl | DOI

[23] Yakymiv A. L., “Tauberova teorema dlya proizvodyaschikh funktsii kratnykh posledovatelnostei”, Teoriya veroyatn. i ee primen., 60:2 (2015), 410–415 ; Yakymiv A. L., “Tauberian theorem for generating functions of multiple series”, Theory Probab. Appl., 60:2 (2016), 343–347 | DOI | MR | Zbl | DOI

[24] Yakymiv A. L., “Tauberova teorema dlya kratnykh stepennykh ryadov”, Matem. sb., 207:2 (2016), 143–172 | DOI | MR | Zbl