On relationship between the parameters characterizing nonlinearity and nonhomomorphy of vector spaces transformation
Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 14-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a relation between the $W$-intersection matrix (which characterizes the degree of “nonhomomorphy”) of a transformation and the difference distribution table and the correlation matrix (which characterize the degree nonlinearity of a transformation). An upper estimate for the dimension of a subspace invariant under almost bent functions is put forward. A formula for evaluation of the $W$-intersection matrix of a composition of two transformations is obtained.
Keywords: $W$-intersection matrix, correlation matrix, difference distribution table, differential attack, linear attack.
@article{DM_2018_30_3_a1,
     author = {D. A. Burov},
     title = {On relationship between the parameters characterizing nonlinearity and nonhomomorphy of vector spaces transformation},
     journal = {Diskretnaya Matematika},
     pages = {14--24},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a1/}
}
TY  - JOUR
AU  - D. A. Burov
TI  - On relationship between the parameters characterizing nonlinearity and nonhomomorphy of vector spaces transformation
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 14
EP  - 24
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_3_a1/
LA  - ru
ID  - DM_2018_30_3_a1
ER  - 
%0 Journal Article
%A D. A. Burov
%T On relationship between the parameters characterizing nonlinearity and nonhomomorphy of vector spaces transformation
%J Diskretnaya Matematika
%D 2018
%P 14-24
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_3_a1/
%G ru
%F DM_2018_30_3_a1
D. A. Burov. On relationship between the parameters characterizing nonlinearity and nonhomomorphy of vector spaces transformation. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 14-24. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a1/