Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 73-98
Voir la notice de l'article provenant de la source Math-Net.Ru
We refine local limit theorems for the distribution of a part of the weight vector of subfunctions and for the distribution of a part of the vector of spectral coefficients of linear combinations of coordinate functions of a random binary mapping. These theorems are used to derive improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions.
Keywords:
random binary mapping, local limit theorem, weights of subfunctions, spectral coefficients, $(n,m,k)$-stable functions, correlation-immune functions.
@article{DM_2018_30_2_a6,
author = {K. N. Pankov},
title = {Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial {Boolean} functions},
journal = {Diskretnaya Matematika},
pages = {73--98},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/}
}
TY - JOUR AU - K. N. Pankov TI - Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions JO - Diskretnaya Matematika PY - 2018 SP - 73 EP - 98 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/ LA - ru ID - DM_2018_30_2_a6 ER -
K. N. Pankov. Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 73-98. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/