Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2018_30_2_a6, author = {K. N. Pankov}, title = {Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial {Boolean} functions}, journal = {Diskretnaya Matematika}, pages = {73--98}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/} }
TY - JOUR AU - K. N. Pankov TI - Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions JO - Diskretnaya Matematika PY - 2018 SP - 73 EP - 98 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/ LA - ru ID - DM_2018_30_2_a6 ER -
K. N. Pankov. Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 73-98. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/
[1] Denisov O. V., “An asymptotic formula for the number of correlation-immune of order $k$ Boolean functions”, Discrete Math. Appl., 2:4 (1992), 407–426 | DOI | MR
[2] Denisov O. V., “A local limit theorem for the distribution of a part of the spectrum of a random binary function”, Discrete Math. Appl., 10:1 (2000), 87–101 | DOI | DOI | MR | Zbl
[3] Elizarov\;V. P., Konechnye koltsa, Gelios ARV, Moskva, 2006, 304 pp.
[4] Lavrentev\;M. A., Shabat\;B. V., Metody teorii funktsii kompleksnogo peremennogo, Gosudarstvennoe izdatlstvo fiziko-matematicheskoi literatury, Moskva, 1958, 680 pp. | MR
[5] Logachev\;O. A., Salnikov\;A. A., Smyshlyaev\;S. V., Yaschenko\;V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, URSS, Moskva, 2015, 576 pp. | MR
[6] Pankov\;K. N., “Asimptoticheskie otsenki dlya chisel dvoichnykh otobrazhenii s zadannymi kriptograficheskimi svoistvami”, Matematicheskie voprosy kriptografii, 5:4 (2014), 73–97 | DOI | MR
[7] Pankov\;K. N., “Lokalnaya predelnaya teorema dlya raspredeleniya chasti vektora vesov podfunktsii komponent sluchainogo dvoichnogo otobrazheniya”, Matematicheskie voprosy kriptografii, 5:3 (2014), 49–80 | DOI
[8] Pankov\;K. N., “Otsenki skorosti skhodimosti v predelnykh teoremakh dlya sovmestnykh raspredelenii chasti kharakteristik sluchainykh dvoichnykh otobrazhenii”, Prikladnaya diskretnaya matematika, 5:4 (2012), 14–30
[9] Prokhorov Yu. V., “Limit theorem for sums of random vectors, whose dimension tends to infinity”, Theory Probab. Appl., 35:4 (1990), 755–757 | DOI | MR | Zbl
[10] Razvitie tekhnologii raspredelennykh reestrov, Doklad dlya obschestvennykh konsultatsii, Tsentralnyi bank Rossiiskoi Federatsii, Moskva, 2017, 16 pp. http://www.cbr.ru/analytics/ppc/Consultation_Paper_1712129(2).pdf
[11] Ryazanov B. V., “On the distribution of the spectral complexity of Boolean functions”, Discrete Math. Appl., 4:3 (1994), 279–288 | DOI | MR | Zbl
[12] Sachkov\;V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, Moskva, 2004, 424 pp. | MR
[13] Sachkov\;V. N., Kurs kombinatornogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva, Izhevsk, 2013, 336 pp.
[14] Sevastyanov\;B. A., Kurs teorii veroyatnostei i matematicheskoi statistiki, Nauka, Moskva, 1982, 256 pp. | MR
[15] Slovar kriptograficheskikh terminov, eds. pod red. B. A. Pogorelova i V. N. Sachkova, MTsNMO, Moskva, 2006, 94 pp.
[16] Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, eds. Abramowitz M., Stegun I. A., 1965, 1046 pp. | MR | MR
[17] Tarannikov\;Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matematicheskie voprosy kibernetiki, 11 (2002), 91–149 | MR
[18] Feller W., An Introduction to Probability Theory and Its Applications, v. 1, 3rd ed., Wiley, 1968, 528 pp. | MR | MR | Zbl
[19] Yaschenko\;V. V., “Svoistva bulevykh otobrazhenii, svodimye k svoistvam ikh koordinatnykh funktsii”, Vestnik MGU. Ser. Matem., 33:1 (1997), 11–13
[20] Bach\;E., “Improved asymptotic formulas for counting correlation immune Boolean functions”, SIAM J. Discrete Math., 23:3 (2009), 1525–1538 | DOI | MR | Zbl
[21] Canfield\;E. R., GaoŻ., Greenhill\;C., McKay\;B. D., Robinson\;R. W., “Asymptotic enumeration of correlation-immune Boolean functions”, Cryptography and Communications, 2:1 (2010), 111–126 | DOI | MR | Zbl
[22] Carlet\;C., “Vectorial Boolean functions for cryptography”, glava 9 v kn., Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Encyclopedia of Mathematics and its Applications, 134, Cambridge University Press, Cambridge, 2010, 398–472
[23] Xiao\;G.- Z., Massey\;J. L., “A spectral characterization of correlation-immune combining functions”, IEEE Trans. Inf. Theory, 34:3 (1988), 569–571 | DOI | MR | Zbl