Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 73-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We refine local limit theorems for the distribution of a part of the weight vector of subfunctions and for the distribution of a part of the vector of spectral coefficients of linear combinations of coordinate functions of a random binary mapping. These theorems are used to derive improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions.
Keywords: random binary mapping, local limit theorem, weights of subfunctions, spectral coefficients, $(n,m,k)$-stable functions, correlation-immune functions.
@article{DM_2018_30_2_a6,
     author = {K. N. Pankov},
     title = {Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {73--98},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/}
}
TY  - JOUR
AU  - K. N. Pankov
TI  - Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 73
EP  - 98
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/
LA  - ru
ID  - DM_2018_30_2_a6
ER  - 
%0 Journal Article
%A K. N. Pankov
%T Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions
%J Diskretnaya Matematika
%D 2018
%P 73-98
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/
%G ru
%F DM_2018_30_2_a6
K. N. Pankov. Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 73-98. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/

[1] Denisov O. V., “An asymptotic formula for the number of correlation-immune of order $k$ Boolean functions”, Discrete Math. Appl., 2:4 (1992), 407–426 | DOI | MR

[2] Denisov O. V., “A local limit theorem for the distribution of a part of the spectrum of a random binary function”, Discrete Math. Appl., 10:1 (2000), 87–101 | DOI | DOI | MR | Zbl

[3] Elizarov\;V. P., Konechnye koltsa, Gelios ARV, Moskva, 2006, 304 pp.

[4] Lavrentev\;M. A., Shabat\;B. V., Metody teorii funktsii kompleksnogo peremennogo, Gosudarstvennoe izdatlstvo fiziko-matematicheskoi literatury, Moskva, 1958, 680 pp. | MR

[5] Logachev\;O. A., Salnikov\;A. A., Smyshlyaev\;S. V., Yaschenko\;V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, URSS, Moskva, 2015, 576 pp. | MR

[6] Pankov\;K. N., “Asimptoticheskie otsenki dlya chisel dvoichnykh otobrazhenii s zadannymi kriptograficheskimi svoistvami”, Matematicheskie voprosy kriptografii, 5:4 (2014), 73–97 | DOI | MR

[7] Pankov\;K. N., “Lokalnaya predelnaya teorema dlya raspredeleniya chasti vektora vesov podfunktsii komponent sluchainogo dvoichnogo otobrazheniya”, Matematicheskie voprosy kriptografii, 5:3 (2014), 49–80 | DOI

[8] Pankov\;K. N., “Otsenki skorosti skhodimosti v predelnykh teoremakh dlya sovmestnykh raspredelenii chasti kharakteristik sluchainykh dvoichnykh otobrazhenii”, Prikladnaya diskretnaya matematika, 5:4 (2012), 14–30

[9] Prokhorov Yu. V., “Limit theorem for sums of random vectors, whose dimension tends to infinity”, Theory Probab. Appl., 35:4 (1990), 755–757 | DOI | MR | Zbl

[10] Razvitie tekhnologii raspredelennykh reestrov, Doklad dlya obschestvennykh konsultatsii, Tsentralnyi bank Rossiiskoi Federatsii, Moskva, 2017, 16 pp. http://www.cbr.ru/analytics/ppc/Consultation_Paper_1712129(2).pdf

[11] Ryazanov B. V., “On the distribution of the spectral complexity of Boolean functions”, Discrete Math. Appl., 4:3 (1994), 279–288 | DOI | MR | Zbl

[12] Sachkov\;V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, Moskva, 2004, 424 pp. | MR

[13] Sachkov\;V. N., Kurs kombinatornogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva, Izhevsk, 2013, 336 pp.

[14] Sevastyanov\;B. A., Kurs teorii veroyatnostei i matematicheskoi statistiki, Nauka, Moskva, 1982, 256 pp. | MR

[15] Slovar kriptograficheskikh terminov, eds. pod red. B. A. Pogorelova i V. N. Sachkova, MTsNMO, Moskva, 2006, 94 pp.

[16] Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, eds. Abramowitz M., Stegun I. A., 1965, 1046 pp. | MR | MR

[17] Tarannikov\;Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matematicheskie voprosy kibernetiki, 11 (2002), 91–149 | MR

[18] Feller W., An Introduction to Probability Theory and Its Applications, v. 1, 3rd ed., Wiley, 1968, 528 pp. | MR | MR | Zbl

[19] Yaschenko\;V. V., “Svoistva bulevykh otobrazhenii, svodimye k svoistvam ikh koordinatnykh funktsii”, Vestnik MGU. Ser. Matem., 33:1 (1997), 11–13

[20] Bach\;E., “Improved asymptotic formulas for counting correlation immune Boolean functions”, SIAM J. Discrete Math., 23:3 (2009), 1525–1538 | DOI | MR | Zbl

[21] Canfield\;E. R., GaoŻ., Greenhill\;C., McKay\;B. D., Robinson\;R. W., “Asymptotic enumeration of correlation-immune Boolean functions”, Cryptography and Communications, 2:1 (2010), 111–126 | DOI | MR | Zbl

[22] Carlet\;C., “Vectorial Boolean functions for cryptography”, glava 9 v kn., Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Encyclopedia of Mathematics and its Applications, 134, Cambridge University Press, Cambridge, 2010, 398–472

[23] Xiao\;G.- Z., Massey\;J. L., “A spectral characterization of correlation-immune combining functions”, IEEE Trans. Inf. Theory, 34:3 (1988), 569–571 | DOI | MR | Zbl