Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 73-98

Voir la notice de l'article provenant de la source Math-Net.Ru

We refine local limit theorems for the distribution of a part of the weight vector of subfunctions and for the distribution of a part of the vector of spectral coefficients of linear combinations of coordinate functions of a random binary mapping. These theorems are used to derive improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions.
Keywords: random binary mapping, local limit theorem, weights of subfunctions, spectral coefficients, $(n,m,k)$-stable functions, correlation-immune functions.
@article{DM_2018_30_2_a6,
     author = {K. N. Pankov},
     title = {Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {73--98},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/}
}
TY  - JOUR
AU  - K. N. Pankov
TI  - Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 73
EP  - 98
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/
LA  - ru
ID  - DM_2018_30_2_a6
ER  - 
%0 Journal Article
%A K. N. Pankov
%T Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions
%J Diskretnaya Matematika
%D 2018
%P 73-98
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/
%G ru
%F DM_2018_30_2_a6
K. N. Pankov. Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 73-98. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a6/