Formulas for a characteristic of spheres and balls in binary high-dimensional spaces
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 62-72

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a special function $\rho(H)$ of the subset $H$ of $n$-dimensional vector linear space over the field $K$. This function is used in the estimates of accuracy of the Poisson approximation for the distribution of the number of solutions of systems of random equations and random inclusions over $K$. For the case when $K=GF(2)$ and $H$ is a sphere or ball (in the Hamming metric) in $\{0,1\}^n$ we obtain explicit and approximate formulas for $\rho(H)$ for sufficiently large values of $n$.
Keywords: linear spaces over finite fields, Hamming metric, random linear inclusions.
@article{DM_2018_30_2_a5,
     author = {V. G. Mikhailov},
     title = {Formulas for a characteristic of spheres and balls in binary high-dimensional spaces},
     journal = {Diskretnaya Matematika},
     pages = {62--72},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a5/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - Formulas for a characteristic of spheres and balls in binary high-dimensional spaces
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 62
EP  - 72
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a5/
LA  - ru
ID  - DM_2018_30_2_a5
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T Formulas for a characteristic of spheres and balls in binary high-dimensional spaces
%J Diskretnaya Matematika
%D 2018
%P 62-72
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_2_a5/
%G ru
%F DM_2018_30_2_a5
V. G. Mikhailov. Formulas for a characteristic of spheres and balls in binary high-dimensional spaces. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 62-72. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a5/