Formulas for a characteristic of spheres and balls in binary high-dimensional spaces
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 62-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a special function $\rho(H)$ of the subset $H$ of $n$-dimensional vector linear space over the field $K$. This function is used in the estimates of accuracy of the Poisson approximation for the distribution of the number of solutions of systems of random equations and random inclusions over $K$. For the case when $K=GF(2)$ and $H$ is a sphere or ball (in the Hamming metric) in $\{0,1\}^n$ we obtain explicit and approximate formulas for $\rho(H)$ for sufficiently large values of $n$.
Keywords: linear spaces over finite fields, Hamming metric, random linear inclusions.
@article{DM_2018_30_2_a5,
     author = {V. G. Mikhailov},
     title = {Formulas for a characteristic of spheres and balls in binary high-dimensional spaces},
     journal = {Diskretnaya Matematika},
     pages = {62--72},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a5/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - Formulas for a characteristic of spheres and balls in binary high-dimensional spaces
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 62
EP  - 72
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a5/
LA  - ru
ID  - DM_2018_30_2_a5
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T Formulas for a characteristic of spheres and balls in binary high-dimensional spaces
%J Diskretnaya Matematika
%D 2018
%P 62-72
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_2_a5/
%G ru
%F DM_2018_30_2_a5
V. G. Mikhailov. Formulas for a characteristic of spheres and balls in binary high-dimensional spaces. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 62-72. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a5/

[1] Mikhailov V. G., “A Poisson theorem for the number of non-collinear solutions of a system of random equations”, Discrete Math. Appl., 11:4 (2001), 391–400 | DOI | DOI | MR | Zbl

[2] Mikhailov V. G., “Limit theorems for the number of points of a given set covered by a random linear subspace”, Discrete Math. Appl., 13:2 (2003), 179–188 | DOI | DOI | MR | Zbl

[3] Mikhailov V. G., “Limit theorems for the number of solutions of a system of random linear equations belonging to a given set”, Discrete Math. Appl., 17:1 (2007), 13–22 | DOI | DOI | MR | Zbl | Zbl

[4] Kopyttsev V. A., Mikhailov V. G., “Poisson-type theorems for the number of special solutions of a random linear inclusion”, Discrete Math. Appl., 20:2 (2010), 191–211 | DOI | DOI | MR | Zbl

[5] Kopyttsev V.A., Mikhailov V.G., “Teoremy puassonovskogo tipa dlya chisla reshenii sluchainykh vklyuchenii”, Matematicheskie voprosy kriptografii, 1:4 (2010), 63-84 | DOI

[6] Kopyttsev V.A., Mikhailov V.G., “O raspredelenii chisel reshenii sluchainykh vklyuchenii”, Matematicheskie voprosy kriptografii, 2:2 (2011), 55-80 | DOI

[7] Kopyttsev V.A., Mikhailov V.G., “Usloviya skhodimosti k raspredeleniyu Puassona dlya chisel reshenii sluchainykh vklyuchenii”, Matematicheskie voprosy kriptografii, 3:3 (2012), 35-55 | DOI

[8] Kopyttsev V. A., Mikhailov V. G., “Poisson-type limit theorems for the generalised linear inclusion”, Discrete Math. Appl., 22:4 (2012), 477–491 | DOI | DOI | MR | Zbl

[9] Kopyttsev V.A., Mikhailov V.G., “Ob odnom asimptoticheskom svoistve sfer v diskretnykh prostranstvakh bolshoi razmernosti”, Matematicheskie voprosy kriptografii, 5:1 (2014), 73-83 | DOI