Formulas for a characteristic of spheres and balls in binary high-dimensional spaces
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 62-72
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a special function $\rho(H)$ of the subset $H$ of $n$-dimensional vector linear space over the field $K$. This function is used in the estimates of accuracy of the Poisson approximation for the distribution of the number of solutions of systems of random equations and random inclusions over $K$. For the case when $K=GF(2)$ and $H$ is a sphere or ball (in the Hamming metric) in $\{0,1\}^n$ we obtain explicit and approximate formulas for $\rho(H)$ for sufficiently large values of $n$.
Keywords:
linear spaces over finite fields, Hamming metric, random linear inclusions.
@article{DM_2018_30_2_a5,
author = {V. G. Mikhailov},
title = {Formulas for a characteristic of spheres and balls in binary high-dimensional spaces},
journal = {Diskretnaya Matematika},
pages = {62--72},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a5/}
}
V. G. Mikhailov. Formulas for a characteristic of spheres and balls in binary high-dimensional spaces. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 62-72. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a5/