Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2018_30_2_a3, author = {N. V. Kotlyarov}, title = {Existence of words over a binary alphabet free from squares with mismatches}, journal = {Diskretnaya Matematika}, pages = {37--54}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a3/} }
N. V. Kotlyarov. Existence of words over a binary alphabet free from squares with mismatches. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 37-54. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a3/
[1] Thue A., “Uber unendliche Zeichenreihen”, Mat. Nat. Kl. Khristiana, 7 (1906), 1–22
[2] Salomaa A., Jewels of formal language theory, 1981, 144 pp. | MR | MR
[3] Thue A., “Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen”, Mat. Nat. Kl. Kristiania, 1 (1912), 1–67 | Zbl
[4] Fraenkel A. S., Simpson R. J., “How many squares must a binary sequence contain?”, Research Paper #R2, Electr. J. Comb., 2 (1995) | MR
[5] Crochemore M., Ilie L., Rytter W., “Repetitions in strings: algorithms and combinatorics”, Theor. Comput. Sci., 410(50) (2009), 5227–5235 | DOI | MR | Zbl
[6] Crochemore M., Rytter W., “Squares, cubes, and time-space efficient string searching”, Algorithmica, 13:5 (1995), 405–425 | DOI | MR | Zbl
[7] Kotlyarov N.V., “Existence of arbitrarily long square-free words with one possible mismatch”, Discrete Math. Appl., 25:6 (2015), 345–357 | DOI | DOI | MR | Zbl
[8] Kotlyarov N.V., “Square-free words with one possible mismatch”, 71, no. 1, 31–34 | MR | Zbl