Estimates of the mean size of the subset image under composition of random mappings
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 27-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{X}_N$ be a set of $N$ elements and $F_1,F_2,\ldots$ be a sequence of random independent equiprobable mappings $\mathcal{X}_N\to\mathcal{X}_N$. For a subset $S_0\subset\mathcal{X}_N$, $|S_0|=m$, we consider a sequence of its images $S_t=F_t(\ldots F_2(F_1(S_0))\ldots)$, $t=1,2\ldots$ An approach to the exact recurrent computation of distribution of $|S_t|$ is described. Two-sided inequalities for $\mathbf{M}\{|S_t|\,|\,|S_0|=m\}$ such that the difference between the upper and lower bounds is $o(m)$ for $m,t,N\to\infty,\,mt=o(N)$ are derived. The results are of interest for the analysis of time-memory tradeoff algorithms.
Keywords: compositions of random mappings, time-memory tradeoff method.
@article{DM_2018_30_2_a2,
     author = {A. M. Zubkov and A. A. Serov},
     title = {Estimates of the mean size of the subset image under composition of random mappings},
     journal = {Diskretnaya Matematika},
     pages = {27--36},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a2/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - A. A. Serov
TI  - Estimates of the mean size of the subset image under composition of random mappings
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 27
EP  - 36
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a2/
LA  - ru
ID  - DM_2018_30_2_a2
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A A. A. Serov
%T Estimates of the mean size of the subset image under composition of random mappings
%J Diskretnaya Matematika
%D 2018
%P 27-36
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_2_a2/
%G ru
%F DM_2018_30_2_a2
A. M. Zubkov; A. A. Serov. Estimates of the mean size of the subset image under composition of random mappings. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 27-36. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a2/

[1] Bonferroni C. E., “Teoria statistica delle classi e calcolo delle probabilità”, Pubbl. d. R. Ist. Super. di Sci. Econom. e Commerciali di Firenze, 1936, no. 8, 3–62 (in Italian)

[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966, 576 pp. | MR

[3] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, M., 1976, 224 pp. ; Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Random allocations, V. H. Winston Sons, Washington, 1978, 262 pp. | MR | MR | Zbl

[4] Borovkov A. A., Probability Theory, Gordon Breach, New York, 1998, 474 pp. | MR | Zbl

[5] Hellman M.E., “A cryptanalytic time–memory trade-off”, IEEE Trans. Inf. Theory, 1980, 401–406 | DOI | MR | Zbl

[6] Flajolet P., Odlyzko A. M., “Random mapping statistics”, Eurocrypt'89, Lect. Notes Comput. Sci., 434, 1990, 329–354 | DOI | MR | Zbl

[7] Oechslin P., “Making a faster cryptanalytic time-memory trade-off”, Lect. Notes Comput. Sci, 2729 (2003), 617–630 | DOI | MR | Zbl

[8] Hong J., “The cost of false alarms in Hellman and rainbow tradeoffs”, Designs, Codes and Cryptography, 57:3 (2010), 293–327 | DOI | MR | Zbl

[9] Hong J., Moon S., “A comparison of cryptanalytic tradeoff algorithms”, J. Cryptology, 26 2013, 559–637 | DOI | MR | Zbl

[10] Pilshchikov D. V., “Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the Galton-Watson process”, Matematicheskie Voprosy Kriptografii, 5:2 (2014), 103–108 | DOI | MR

[11] Zubkov A. M., Serov A. A., “Images of subset of finite set under iterations of random mappings”, Discrete Math. Appl., 25:3 (2015), 179–185 | DOI | DOI | MR | Zbl

[12] Serov A. .A., “Images of a finite set under iterations of two random dependent mappings”, Discrete Math. Appl., 26:3 (2016), 175–181 | DOI | DOI | MR | Zbl

[13] Zubkov A. M., Serov A. A., “Limit theorem for the size of an image of subset under compositions of random mappings”, Discrete Math. Appl., 28:2 (2018), 131–138 | DOI | DOI | MR | Zbl

[14] Zubkov A. M., Mironkin V. O., “Raspredelenie dliny otrezka aperiodichnosti v grafe $k$-kratnoi iteratsii sluchainogo ravnoveroyatnogo otobrazheniya”, Matematicheskie voprosy kriptografii, 8:4 (2017), 63–74 | DOI