Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2018_30_2_a1, author = {E. E. D'yakonova}, title = {A subcritical decomposable branching process in a mixed environment}, journal = {Diskretnaya Matematika}, pages = {14--26}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a1/} }
E. E. D'yakonova. A subcritical decomposable branching process in a mixed environment. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 14-26. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a1/
[1] Afanasyev V. I., “Functional limit theorems for the decomposable branching process with two types of particles”, Discrete Math. Appl., 26:2 (2016), 71-88 | DOI | MR | MR
[2] Afanasyev V. I., “On a decomposable branching process with two types of particles”, Proc. Steklov Inst. Math., 294, 2016, 1-12 | DOI | MR | Zbl
[3] Afanasyev V.I., “A functional limit theorem for the decomposable branching process with two types of particles”, Math. Notes, 103:3 (2018), 337–347 | DOI | DOI | MR
[4] Vatutin V. A., “Polling systems and multitype branching processes in a random environment with final product”, Theory Probab. Appl., 55:4 (2011), 631–660 | DOI | DOI | MR | Zbl
[5] Vatutin V. A., “The structure of decomposable reduced branching processes. I. Finite-dimensional distributions”, Theory Probab. Appl., 59:4 (2015), 641–662 | DOI | DOI | MR | Zbl
[6] Vatutin V. A., “The structure of decomposable reduced branching processes. II. Functional limit theorems”, Theory Probab. Appl., 60:1 (2016), 103–119 | DOI | DOI | MR | MR | Zbl
[7] Vatutin V. A., D'yakonova E. E., “Decomposable branching processes with a fixed extinction moment”, Proc. Steklov Inst. Math., 290 (2015), 103-124 | DOI | MR | Zbl
[8] Vatutin V. A., Dyakonova E. E., “Extinction of decomposable branching processes”, Discrete Math. Appl., 26:3 (2016), 183-192 | DOI | DOI | MR | Zbl
[9] Vatutin V. A., “A conditional functional limit theorem for decomposable branching processes with two types of particles”, Math. Notes, 101:5 (2017), 778-789 | DOI | DOI | MR | Zbl
[10] Vatutin V.A., Dyakonova E.E., “Decomposable branching processes with two types of particles”, Discrete Math. Appl., 28:2 (2018), 119–130 | DOI | DOI | Zbl
[11] Vatutin V., Dyakonova E., Jagers P., Sagitov S., “A decomposable branching process in a Markovian environment”, Art. ID 694285, Int. J. Stoch. Analysis, 2012 (2012), 24 pp. | DOI | MR
[12] Vatutin V., Liu Q., “Limit theorems for decomposable branching processes in a random environment”, J. Appl. Prob., 52:1 (2015), 1-17 | DOI | MR
[13] Vatutin V. A., Sagitov S. M., “A decomposable critical branching process with two types of particles”, Proc. Steklov Inst. Math., 177, 1988, 1-19 | MR | Zbl | Zbl
[14] Foster J., Ney P., “Decomposable critical multi-type branching processes. Invited paper for Mahalanobis Memorial symposium (Calcutta)”, Sanhya: the Indian J. Stat., Ser. A, 38 (1976), 28–37 | MR | Zbl
[15] Foster J., Ney P., “Limit laws for decomposable critical branching processes”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 46 (1978), 13–43 | DOI | MR | Zbl
[16] Ogura Y., “Asymptotic behavior of multitype Galton–Watson processes”, J. Math. Kyoto Univ., 15 (1975), 251–302 | DOI | MR | Zbl
[17] Sagitov S. M., “Multidimensional limit theorems for a branching process with a single type of particles”, Mathematical Notes, 42:1 (1987), 597-602 | DOI | MR | Zbl
[18] Savin A.A., Chistyakov V.P., “Some limit theorems for branching processes with several types of particles”, Theory Probab. Appl., 7 (1962), 93-100 | DOI | Zbl
[19] Zubkov A. M., “The limit behaviour of decomposable critical branching processes with two types of particles”, Theory Probab. Appl., 27:2 (1983), 235-237 | DOI | MR | Zbl
[20] Sewastjanow B. A., Verzweigungsprozesse, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl
[21] Smadi C. , Vatutin V. A., “Reduced two-type decomposable critical branching processes with possibly infinite variance”, Markov Process. Related Fields, 22:2 (2016), 311–358 | MR | Zbl
[22] Felller W., An introduction to probability theory and its applications, John Wiley Sons, Inc., New York, London, Sydney, Toronto, 1971 | MR | MR