A subcritical decomposable branching process in a mixed environment
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 14-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-type decomposable branching process is considered in which particles of the first type may produce at the death moment offspring of both types while particles of the second type may produce at the death moment offspring of their own type only. The reproduction law of the first type particles is specified by a random environment. The reproduction law of the second type particles is one and the same for all generations. A limit theorem is proved describing the conditional distribution of the number of particles in the process at time $nt,t\in (0,1]$, given the survival of the process up to moment $n\rightarrow \infty .$
Keywords: branching process, mixed environment, limit theorem.
@article{DM_2018_30_2_a1,
     author = {E. E. D'yakonova},
     title = {A subcritical decomposable branching process in a mixed environment},
     journal = {Diskretnaya Matematika},
     pages = {14--26},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a1/}
}
TY  - JOUR
AU  - E. E. D'yakonova
TI  - A subcritical decomposable branching process in a mixed environment
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 14
EP  - 26
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a1/
LA  - ru
ID  - DM_2018_30_2_a1
ER  - 
%0 Journal Article
%A E. E. D'yakonova
%T A subcritical decomposable branching process in a mixed environment
%J Diskretnaya Matematika
%D 2018
%P 14-26
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_2_a1/
%G ru
%F DM_2018_30_2_a1
E. E. D'yakonova. A subcritical decomposable branching process in a mixed environment. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 14-26. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a1/

[1] Afanasyev V. I., “Functional limit theorems for the decomposable branching process with two types of particles”, Discrete Math. Appl., 26:2 (2016), 71-88 | DOI | MR | MR

[2] Afanasyev V. I., “On a decomposable branching process with two types of particles”, Proc. Steklov Inst. Math., 294, 2016, 1-12 | DOI | MR | Zbl

[3] Afanasyev V.I., “A functional limit theorem for the decomposable branching process with two types of particles”, Math. Notes, 103:3 (2018), 337–347 | DOI | DOI | MR

[4] Vatutin V. A., “Polling systems and multitype branching processes in a random environment with final product”, Theory Probab. Appl., 55:4 (2011), 631–660 | DOI | DOI | MR | Zbl

[5] Vatutin V. A., “The structure of decomposable reduced branching processes. I. Finite-dimensional distributions”, Theory Probab. Appl., 59:4 (2015), 641–662 | DOI | DOI | MR | Zbl

[6] Vatutin V. A., “The structure of decomposable reduced branching processes. II. Functional limit theorems”, Theory Probab. Appl., 60:1 (2016), 103–119 | DOI | DOI | MR | MR | Zbl

[7] Vatutin V. A., D'yakonova E. E., “Decomposable branching processes with a fixed extinction moment”, Proc. Steklov Inst. Math., 290 (2015), 103-124 | DOI | MR | Zbl

[8] Vatutin V. A., Dyakonova E. E., “Extinction of decomposable branching processes”, Discrete Math. Appl., 26:3 (2016), 183-192 | DOI | DOI | MR | Zbl

[9] Vatutin V. A., “A conditional functional limit theorem for decomposable branching processes with two types of particles”, Math. Notes, 101:5 (2017), 778-789 | DOI | DOI | MR | Zbl

[10] Vatutin V.A., Dyakonova E.E., “Decomposable branching processes with two types of particles”, Discrete Math. Appl., 28:2 (2018), 119–130 | DOI | DOI | Zbl

[11] Vatutin V., Dyakonova E., Jagers P., Sagitov S., “A decomposable branching process in a Markovian environment”, Art. ID 694285, Int. J. Stoch. Analysis, 2012 (2012), 24 pp. | DOI | MR

[12] Vatutin V., Liu Q., “Limit theorems for decomposable branching processes in a random environment”, J. Appl. Prob., 52:1 (2015), 1-17 | DOI | MR

[13] Vatutin V. A., Sagitov S. M., “A decomposable critical branching process with two types of particles”, Proc. Steklov Inst. Math., 177, 1988, 1-19 | MR | Zbl | Zbl

[14] Foster J., Ney P., “Decomposable critical multi-type branching processes. Invited paper for Mahalanobis Memorial symposium (Calcutta)”, Sanhya: the Indian J. Stat., Ser. A, 38 (1976), 28–37 | MR | Zbl

[15] Foster J., Ney P., “Limit laws for decomposable critical branching processes”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 46 (1978), 13–43 | DOI | MR | Zbl

[16] Ogura Y., “Asymptotic behavior of multitype Galton–Watson processes”, J. Math. Kyoto Univ., 15 (1975), 251–302 | DOI | MR | Zbl

[17] Sagitov S. M., “Multidimensional limit theorems for a branching process with a single type of particles”, Mathematical Notes, 42:1 (1987), 597-602 | DOI | MR | Zbl

[18] Savin A.A., Chistyakov V.P., “Some limit theorems for branching processes with several types of particles”, Theory Probab. Appl., 7 (1962), 93-100 | DOI | Zbl

[19] Zubkov A. M., “The limit behaviour of decomposable critical branching processes with two types of particles”, Theory Probab. Appl., 27:2 (1983), 235-237 | DOI | MR | Zbl

[20] Sewastjanow B. A., Verzweigungsprozesse, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl

[21] Smadi C. , Vatutin V. A., “Reduced two-type decomposable critical branching processes with possibly infinite variance”, Markov Process. Related Fields, 22:2 (2016), 311–358 | MR | Zbl

[22] Felller W., An introduction to probability theory and its applications, John Wiley Sons, Inc., New York, London, Sydney, Toronto, 1971 | MR | MR