On closed classes in partial $k$-valued logic that contain the class of monotone functions
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a precomplete class (a maximal clone) in $k$-valued logic and $T(A)$ be the family of all closed classes (under superposition) in partial $k$-valued logic that contain $A$. A simple test is put forward capable of finding out from a partial order defining the precomplete class $A$ of monotone functions whether the family $T(A)$ is finite or infinite. This completes the solution of the problem of finiteness of $T(A)$ for all precomplete classes of $k$-valued logic. The proof depends on new families of closed classes founded by the author of the present paper.
Keywords: $k$-valued logic, partial $k$-valued logic, closed class, precomplete class, monotone function.
@article{DM_2018_30_2_a0,
     author = {V. B. Alekseev},
     title = {On closed classes in partial $k$-valued logic that contain the class of monotone functions},
     journal = {Diskretnaya Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a0/}
}
TY  - JOUR
AU  - V. B. Alekseev
TI  - On closed classes in partial $k$-valued logic that contain the class of monotone functions
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 3
EP  - 13
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a0/
LA  - ru
ID  - DM_2018_30_2_a0
ER  - 
%0 Journal Article
%A V. B. Alekseev
%T On closed classes in partial $k$-valued logic that contain the class of monotone functions
%J Diskretnaya Matematika
%D 2018
%P 3-13
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_2_a0/
%G ru
%F DM_2018_30_2_a0
V. B. Alekseev. On closed classes in partial $k$-valued logic that contain the class of monotone functions. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a0/

[1] Alekseev V. B., Voronenko A. A., “O nekotorykh zamknutykh klassakh v chastichnoi dvuznachnoi logike”, Diskretnaya matematika, 6:4 (1994), 58–79 | Zbl

[2] Lau, D., Function algebras on finite sets: a basic course on many-valued logic and clone theory, Springer, Berlin, 2006, 668 pp. | MR | Zbl

[3] Couceiro M., Haddad L., Schölzel K., Waldhauser T., “A solution to a problem of D. Lau: Complete classification of intervals in the lattice of partial Boolean clones”, J. Mult.-Valued Logic Soft Comput., 28 (2017), 47–58 | MR

[4] Couceiro M., Haddad L., Rosenberg I.G., “Partial clones containing all Boolean monotone self-dual partial functions”, J. Mult.-Valued Logic Soft Comput., 27 (2016), 183–192 | MR

[5] Haddad L., “Infinite chains of partial clones containing all selfdual monotonic partial functions”, J. Mult.-Valued Logic Soft Comput., 18 (2012), 139–152 | MR | Zbl

[6] Haddad L., Lau D., Rosenberg I. G., “Intervals of partial clones containing maximal clones”, J. Autom. Lang. Comb., 11:4 (2006), 399–421 | MR | Zbl

[7] Haddad L., Lau D., “Uncountable families of partial clones containing maximal clones”, Beiträge zur Algebra und Geometrie, 48:1 (2007), 257–280 | MR | Zbl

[8] Börner F., Haddad L., “Maximal partial clones with no finite basis”, Algebra Univers., 40:4 (1998), 453–476 | DOI | MR | Zbl

[9] Dudakova O. S., “O klassakh chastichnykh monotonnykh funktsii shestiznachnoi logiki”, Problemy teoreticheskoi kibernetiki, XVIII mezhdunarodnaya konferentsiya, Materialy (Penza, 19–23 iyunya 2017 g.), eds. Pod redaktsiei Yu.I. Zhuravleva, MAKS Press, Moskva, 2017, 78–81

[10] Martynyuk V. V., “Issledovanie nekotorykh klassov funktsii v mnogoznachnykh logikakh”, Problemy kibernetiki, 3, Fizmatgiz, Moskva, 1960, 49–61