Necessary conditions of applicability of Gaussian elimination to systems of equations over quasigroups
Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 95-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously, in the process of investigating systems of equations over the given family ${\mathfrak{S}}\,$ of quasigroup operations, the author proved the following fact: applicability of Gaussian elimination to the systems considered requires that generalized distributivity and transitivity identities hold for the operations from ${\mathfrak{S}}$. The present paper describes all sets of operations that satisfy these identities. The result obtained allows one to conclude that Gaussian elimination is applicable only if the system of equations is linear or may be reduced to a linear system.
Keywords: quasigroups, systems of equations, Gaussian elimination.
@article{DM_2018_30_1_a6,
     author = {S. V. Polin},
     title = {Necessary conditions of applicability of {Gaussian} elimination to systems of equations over quasigroups},
     journal = {Diskretnaya Matematika},
     pages = {95--113},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a6/}
}
TY  - JOUR
AU  - S. V. Polin
TI  - Necessary conditions of applicability of Gaussian elimination to systems of equations over quasigroups
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 95
EP  - 113
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a6/
LA  - ru
ID  - DM_2018_30_1_a6
ER  - 
%0 Journal Article
%A S. V. Polin
%T Necessary conditions of applicability of Gaussian elimination to systems of equations over quasigroups
%J Diskretnaya Matematika
%D 2018
%P 95-113
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_1_a6/
%G ru
%F DM_2018_30_1_a6
S. V. Polin. Necessary conditions of applicability of Gaussian elimination to systems of equations over quasigroups. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 95-113. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a6/

[1] Aho A. V., Hopcroft J. E., Ullman J. D., The design and analysis of computer algorithms, Addison-Wesley, 1974 | MR | MR

[2] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967, 223 pp. | MR

[3] Belousov V. D., “Systems of quasigroups with generalized identities”, Russian Mathematical Surveys, 20:1 (1965), 75–143 | DOI | MR

[4] Kurosh A. G., Obschaya algebra (lektsii 1969-1970 uchebnogo goda), Nauka, M., 1974, 161 pp. | MR

[5] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970, 392 pp. | MR

[6] Polin S. V., “Semeistva kvazigruppovykh operatsii, svyazannykh obobschennym tozhdestvom distributivnosti”, v pechati, Diskretnaya matematika

[7] Polin S. V., “Elementarnye preobrazovaniya sistem uravnenii nad kvazigruppami i obobschennye tozhdestva”, Diskretnaya matematika, 29:3 (2017), 92–113 | DOI

[8] Hosszu M., “Homogeneous groupoids”, Ann. Univ. Sci. Budapest. Eötvös/ Sect. Math., 1960–1961, no. 3–4, 95–98 | MR

[9] Paige L. J., “Complete mappings of finite groups”, Pacific J. Math., 1 (1951), 111–116 | DOI | MR