Generation of the alternating group by modular additions
Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 56-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with systems of generators of permutation groups on Cartesian products of residue rings. Each separate permutation from the system of generators is constructed on the basis of additions, is characterized by the local action, and leaves fixed the major parts of the components of the element being transformed. A criterion of 2-transitivity of the generated permutation group is given in the form of the strong connectedness of the digraph which corresponds to the system of generators and which is defined on the set of numbers of residue rings in the Cartesian product. Necessary and sufficient conditions under which this group contains an alternating group are formulated.
Keywords: permutation groups, systems of generators, local permutations.
@article{DM_2018_30_1_a3,
     author = {F. M. Malyshev},
     title = {Generation of the alternating group by modular additions},
     journal = {Diskretnaya Matematika},
     pages = {56--65},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a3/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Generation of the alternating group by modular additions
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 56
EP  - 65
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a3/
LA  - ru
ID  - DM_2018_30_1_a3
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Generation of the alternating group by modular additions
%J Diskretnaya Matematika
%D 2018
%P 56-65
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_1_a3/
%G ru
%F DM_2018_30_1_a3
F. M. Malyshev. Generation of the alternating group by modular additions. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 56-65. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a3/

[1] Pogorelov B. A., “Primitive permutation group that contain a $2^m$-cycle”, Algebra and Logic, 19:2 (1980), 147–155 | DOI | MR

[2] Glukhov M.M., Zubov A.Yu., “O dline simmetricheskoi i znakoperemennoi grupp podstanovok v razlichnykh sistemakh obrazuyuschikh”, Matematicheskie voprosy kibernetiki, 1999, no. 8, 5–32, M.: Nauka

[3] Malyshev F.M., “Nasledovanie gruppoi podstanovok nekotorykh svoistv semeistv obrazuyuschikh”, Trudy po diskretnoi matematike, 8 (2004), 155 – 175, FIZMATLIT, M.

[4] Malyshev F.M., “Ob odnoi sisteme obrazuyuschikh simmetricheskoi gruppy podstanovok”, Trudy po diskretnoi matematik, 9 (2006), 110–120, Gelios ARV, M.

[5] Malyshev F.M., “Ob odnoi sisteme obrazuyuschikh znakoperemennoi gruppy na konechnykh vektornykh prostranstvakh”, Trudy po diskretnoi matematike, 10 (2007), 175–181, FIZMATLIT, M.

[6] Fedyukin M.V., “O funktsiyakh, realizuemykh polinomami nad universalnymi algebrami s psevdomodulnymi operatsiyami”, Trudy po diskretnoi matematike, 8 (2004), 299–311, FIZMATLIT, M.

[7] Key J.D., “Note on a consequence for affine groups of the classification theorem for finite simple groups”, Geometrial Dedicata, 14 (1983), 81–86 | MR

[8] Shult E.E., “Permutation groups with few fixed points”, Geometry – Von Standt`s Point of View., D. Reidel Pub. Co., Dordrecht, 1981, 275–311 | DOI | MR

[9] Mihǎilescu P., “Primary cyclotomic units and a proof of Catalan's conjecture”, J. Reine Angew. Math., 572 (2004), 167–195 | MR

[10] Sierpinski W., O rozwiazywaniu rownan w liczbach calkowitych, Warzawa, 1956

[11] Wielandt H., Finite Permutation Groups, Acad. Press, New York, London, 1964, 114 pp. | MR

[12] Steinberg R., Lectures on Chevalley groups, Yale University, 1967 | MR | MR