Boolean functions as points on the hypersphere in the Euclidean space
Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 39-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to the study of algebraic, combinatorial, and cryptographic properties of Boolean functions is proposed. New relations between functions have been revealed by consideration of an injective mapping of the set of Boolean functions onto the sphere in a Euclidean space. Moreover, under this mapping some classes of functions have extremely regular localizations on the sphere. We introduce the concept of curvature of a Boolean function, which characterizes its proximity (in some sense) to maximally nonlinear functions.
Keywords: Boolean function, Hamming space, Euclidean space, multidimensional sphere, Fourier (Walsh–Hadamard) transform, maximal nonlinearity, bent function.
@article{DM_2018_30_1_a2,
     author = {O. A. Logachev and S. N. Fedorov and V. V. Yashchenko},
     title = {Boolean functions as points on the hypersphere in the {Euclidean} space},
     journal = {Diskretnaya Matematika},
     pages = {39--55},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a2/}
}
TY  - JOUR
AU  - O. A. Logachev
AU  - S. N. Fedorov
AU  - V. V. Yashchenko
TI  - Boolean functions as points on the hypersphere in the Euclidean space
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 39
EP  - 55
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a2/
LA  - ru
ID  - DM_2018_30_1_a2
ER  - 
%0 Journal Article
%A O. A. Logachev
%A S. N. Fedorov
%A V. V. Yashchenko
%T Boolean functions as points on the hypersphere in the Euclidean space
%J Diskretnaya Matematika
%D 2018
%P 39-55
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_1_a2/
%G ru
%F DM_2018_30_1_a2
O. A. Logachev; S. N. Fedorov; V. V. Yashchenko. Boolean functions as points on the hypersphere in the Euclidean space. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 39-55. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a2/

[1] Logachev\;O. A., Salnikov\;A. A., Smyshlyaev\;S. V., Yaschenko\;V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, Izd-vo MTsNMO, Moskva, 2012, 584 pp. | MR

[2] MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes. Parts I, II., North-Holland, Amsterdam, 1977 | MR

[3] Sidelnikov\;V. M., Teoriya kodirovaniya, Fizmatlit, Moskva, 2008, 324 pp.

[4] O'Donnell\;R., Analysis of Boolean Functions, Cambridge University Press, 2014, 417 pp. | MR

[5] Rothaus\;O. S., “On ‘Bent’ Functions”, Journal of Combinatorial Theory (A), 20:3 (1976), 300–305 | DOI | MR

[6] Terras\;A., Fourier Analysis on Finite Groups and Applications., Cambridge University Press, 1999, 442 pp. | MR