Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2018_30_1_a2, author = {O. A. Logachev and S. N. Fedorov and V. V. Yashchenko}, title = {Boolean functions as points on the hypersphere in the {Euclidean} space}, journal = {Diskretnaya Matematika}, pages = {39--55}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a2/} }
TY - JOUR AU - O. A. Logachev AU - S. N. Fedorov AU - V. V. Yashchenko TI - Boolean functions as points on the hypersphere in the Euclidean space JO - Diskretnaya Matematika PY - 2018 SP - 39 EP - 55 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a2/ LA - ru ID - DM_2018_30_1_a2 ER -
O. A. Logachev; S. N. Fedorov; V. V. Yashchenko. Boolean functions as points on the hypersphere in the Euclidean space. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 39-55. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a2/
[1] Logachev\;O. A., Salnikov\;A. A., Smyshlyaev\;S. V., Yaschenko\;V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, Izd-vo MTsNMO, Moskva, 2012, 584 pp. | MR
[2] MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes. Parts I, II., North-Holland, Amsterdam, 1977 | MR
[3] Sidelnikov\;V. M., Teoriya kodirovaniya, Fizmatlit, Moskva, 2008, 324 pp.
[4] O'Donnell\;R., Analysis of Boolean Functions, Cambridge University Press, 2014, 417 pp. | MR
[5] Rothaus\;O. S., “On ‘Bent’ Functions”, Journal of Combinatorial Theory (A), 20:3 (1976), 300–305 | DOI | MR
[6] Terras\;A., Fourier Analysis on Finite Groups and Applications., Cambridge University Press, 1999, 442 pp. | MR