Cardinality of generating sets for operations from the Post lattice classes
Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 19-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain precise values of cardinality of minimal generating sets for all Cartesian products of two-element set with respect to an arbitrary set of Boolean operations from the central part of the Post lattice. For the case of sets containing operations from the remaining classes of the Post lattice we obtain cardinality estimations that are accurate up to one.
Keywords: generating sets, finite sets, Boolean functions, Boolean algebra.
@article{DM_2018_30_1_a1,
     author = {S. A. Komkov},
     title = {Cardinality of generating sets for operations from the {Post} lattice classes},
     journal = {Diskretnaya Matematika},
     pages = {19--38},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a1/}
}
TY  - JOUR
AU  - S. A. Komkov
TI  - Cardinality of generating sets for operations from the Post lattice classes
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 19
EP  - 38
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a1/
LA  - ru
ID  - DM_2018_30_1_a1
ER  - 
%0 Journal Article
%A S. A. Komkov
%T Cardinality of generating sets for operations from the Post lattice classes
%J Diskretnaya Matematika
%D 2018
%P 19-38
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_1_a1/
%G ru
%F DM_2018_30_1_a1
S. A. Komkov. Cardinality of generating sets for operations from the Post lattice classes. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 19-38. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a1/

[1] Ansel Zh., “O chisle monotonnykh bulevykh funktsii $n$ peremennykh”, Kibern. sb. Nov. ser., 5, 1968, 53–63

[2] Blokhina G. N., “O predikatnom opisanii klassov Posta”, Diskretnyi analiz, 1970, no. 16, 16-29

[3] Zhuk D. N., “Predikatnyi metod postroeniya reshetki Posta”, Diskretnaya matematika, 23:2 (2011), 115–128 | DOI

[4] Kudryavtsev V. B., Gasanov E. E., Podkolzin A. S., Osnovy teorii intellektualnykh sistem, MAKS Press, M., 2016, 612 pp.

[5] Nikolskii S. M., Kurs matematicheskogo analiza, Uchebnik dlya vuzov, 6-e izd., FIZMATLIT, M., 2001, 592 pp.

[6] Katona G., “A theorem of finite sets”, Theory of Graphs, Proc. colloq. (Hungary September 1966), Acad. Press, New York and London, 1968, 187–207 | MR

[7] Kruskal J. B., “The number of simplices in a complex”, Math. optimiz. techn., 10 (1963), 251–278 | MR

[8] Post E., Two-valued iterative systems of mathematical logic, Ann. Math. Stud., 5, Princeton Univ. Press, Princeton, 1941, 122 pp. | MR

[9] Sperner E., “Ein Satz über Untermengen einer endlichen Menge”, Math. Zeitschrift, 27:1 (1928), 544–548 | DOI | MR

[10] Zhuk D., “The size of generating sets of powers”, 2015, arXiv: 1504.02121