Decomposable branching processes with two types of particles
Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 3-18

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-type critical decomposable branching process with discrete time is considered in which particles of the first type may produce at the death moment offspring of both types while particles of the second type may produce at the death moment offspring of their own type only. Assuming that the offspring distributions of particles of both types may have infinite variance, the asymptotic behavior of the tail distribution of the random variable $\Xi _{2},$ the total number of the second type particles ever born in the process is found. Limit theorems are proved describing (as $N\rightarrow \infty $) the conditional distribution of the amount of the first type particles in different generations given that either $\Xi _{2}=N$ or $\Xi _{2}>N.$
Keywords: decomposable branching process, total population size, limit theorem.
@article{DM_2018_30_1_a0,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Decomposable branching processes with two types of particles},
     journal = {Diskretnaya Matematika},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a0/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Decomposable branching processes with two types of particles
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 3
EP  - 18
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a0/
LA  - ru
ID  - DM_2018_30_1_a0
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Decomposable branching processes with two types of particles
%J Diskretnaya Matematika
%D 2018
%P 3-18
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_1_a0/
%G ru
%F DM_2018_30_1_a0
V. A. Vatutin; E. E. D'yakonova. Decomposable branching processes with two types of particles. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a0/