Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2018_30_1_a0, author = {V. A. Vatutin and E. E. D'yakonova}, title = {Decomposable branching processes with two types of particles}, journal = {Diskretnaya Matematika}, pages = {3--18}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a0/} }
V. A. Vatutin; E. E. D'yakonova. Decomposable branching processes with two types of particles. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a0/
[1] Afanasev V. I., “Funktsionalnye predelnye teoremy dlya razlozhimogo vetvyaschegosya protsessa s dvumya tipami chastits”, Diskretnaya matematika, 27:2 (2015), 22–44 ; Afanasyev V. I., “Functional limit theorems for the decomposable branching process with two types of particles”, Discrete Math. Appl., 26:2 (2016), 71–88 | DOI | MR
[2] Afanasev V. I., “O razlozhimom vetvyaschemsya protsesse s dvumya tipami chastits”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Sbornik statei, Tr. MIAN, 294, MAIK Moskva, 2016, 7–19
[3] Afanasev V. I., “Funktsionalnaya predelnaya teorema dlya razlozhimogo vetvyaschegosya protsessa s dvumya tipami chastits”, Matem. zametki, 103:3 (2018), 323–335
[4] Vatutin V. A., “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. I. Konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primenen., 59:4 (2014), 667-692 ; Vatutin V. A., “The structure of decomposable reduced branching processes. I. Finite-dimensional distributions”, Theory Probab. Appl., 59:4 (2015), 641–662 | DOI | MR | DOI | MR
[5] Vatutin V. A., “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. II. Funktsionalnye predelnye teoremy”, Teoriya veroyatn. i ee primenen., 60:1 (2015), 25–44 ; Vatutin V. A., “The structure of decomposable reduced branching processes. II. Functional limit theorems”, Theory Probab. Appl., 60:1 (2016), 103–119 | DOI | MR | DOI | MR
[6] Vatutin V. A., “Uslovnaya funktsionalnaya predelnaya teorema dlya razlozhimykh vetvyaschikhsya protsessov s dvumya tipami chastits”, Matem. zametki, 101:5 (2017), 669–683 | DOI | MR
[7] Vatutin V. A., Dyakonova E. E., “Razlozhimye vetvyaschiesya protsessy s fiksirovannym momentom vyrozhdeniya”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sbornik statei, Tr. MIAN, 290, MAIK, Moskva, 2015, 114–135
[8] Vatutin V. A., Dyakonova E. E., “O vyrozhdenii razlozhimykh vetvyaschikhsya protsessov”, Diskretnaya matematika, 28:4 (2015), 26–37 ; Vatutin V. A., Dyakonova E. E., “Extinction of decomposable branching processes”, Discrete Math. Appl., 26:3 (2016), 183–192 | DOI | DOI | MR
[9] Vatutin V. A. , Sagitov S. M., “Razlozhimyi kriticheskii vetvyaschiisya protsess s dvumya tipami chastits”, Veroyatnostnye zadachi diskretnoi matematiki, Tr. MIAN SSSR, 177, 1986, 3–20 ; Vatutin V. A., Sagitov S. M., “A decomposable critical branching process with two types of particles”, Proc. Steklov Inst. Math., 177, 1988, 1–19 | MR
[10] Gnedenko B. V., Kolmogorov A. N., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Gos. iz-vo tekhniko-teoreticheskoi literatury, Moskva, Leningrad, 1949 ; Gnedenko B. V., Kolmogorov A. N., Limit distributions for sums of independent random variables, Addison-Wesley, Reading, London, 1954 | MR | MR
[11] Foster J., Ney P., “Decomposable critical multi-type branching processes”, Invited paper for Mahalanobis Memorial symposium (Calcutta), Sanhya: the Indian J. Stat., Series A, 38 (1976), 28–37 | MR
[12] Foster J., Ney P., “Limit laws for decomposable critical branching processes”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 46 (1978), 13–43 | DOI | MR
[13] Ogura Y., “Asymptotic behavior of multitype Galton-Watson processes”, J. Math. Kyoto Univ., 15 (1975), 251–302 | DOI | MR
[14] Savin A. A., Chistyakov V. P., “Nekotorye teoremy dlya vetvyaschikhsya protsessov s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primenen., 7:1 (1962), 95–104
[15] Sagitov S. M., “Mnogomernye predelnye teoremy dlya vetvyaschegosya protsessa s odnim tipom chastits”, Matem. zametki, 42:1 (1987), 157–165 | MR
[16] Slack R. S., “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 9:2 (1968), 139–145 | DOI | MR
[17] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, Moskva, 1985 ; Seneta E., Regularly Varying Functions, Springer-Verlag, Berlin, Heidelberg, New York, 1976 | MR | MR
[18] Kersting G., On the height profile of a conditioned Galton-Watson tree, 24 pages, 2011, arXiv: 1101.3656
[19] Kolchin V. F., Sluchainye otobrazheniya, Nauka, Moskva, 1984 ; Kolchin V. F., Random Mappings, Optimization Software, Inc., Publication Division, 1986 | MR | MR
[20] Bertoin J., Levy Processes, Cambrige University Press, Cambridge, 1996 | MR
[21] Smadi C., Vatutin V. A., “Reduced two-type decomposable critical branching processes with possibly infinite variance”, Markov Process. Related Fields, 22:2 (2016), 311–358 | MR
[22] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, Moskva, 1983 ; Zolotarev V. M., One-dimensional Stable Distributions, Transl. of Math. Monographs, 65, Amer. Math. Soc., Providence, 1986 | MR | MR
[23] Zubkov A. M., “Predelnoe povedenie razlozhimykh kriticheskikh vetvyaschikhsya protsessov s dvumya tipami chastits”, Teoriya veroyatn. i ee primenen., 27:2 (1982), 228–238 ; Zubkov A. M., “The limit behaviour of decomposable critical branching processes with two types of particles”, Theory Probab. Appl., 27:2 (1983), 235–237 | MR | DOI | MR
[24] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, Moskva, 1984 ; Feller W., An Introduction to Probability Theory and its Applications, v. II, John Wiley Sons, Inc., New York, London, Sydney, Toronto, 1971 | MR | MR