Limit Poisson law for the distribution of the number of components in generalized allocation scheme
Diskretnaya Matematika, Tome 29 (2017) no. 4, pp. 143-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider problems on the convergence of distributions of the total number of components and numbers of components with given volume to the Poisson law. Sufficient conditions of such convergence are given. Our results generalize known statemets on the limit Poisson laws of the number of components (cycles, unrooted and rooted trees, blocks and other structures) in the corresponding generalized allocation schemes.
Keywords: generalized allocation scheme, Poisson distribution, components, cycles, blocks, trees, saddle-point method.
@article{DM_2017_29_4_a9,
     author = {A. N. Timashev},
     title = {Limit {Poisson} law for the distribution of the number of components in generalized allocation scheme},
     journal = {Diskretnaya Matematika},
     pages = {143--157},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_4_a9/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Limit Poisson law for the distribution of the number of components in generalized allocation scheme
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 143
EP  - 157
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_4_a9/
LA  - ru
ID  - DM_2017_29_4_a9
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Limit Poisson law for the distribution of the number of components in generalized allocation scheme
%J Diskretnaya Matematika
%D 2017
%P 143-157
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_4_a9/
%G ru
%F DM_2017_29_4_a9
A. N. Timashev. Limit Poisson law for the distribution of the number of components in generalized allocation scheme. Diskretnaya Matematika, Tome 29 (2017) no. 4, pp. 143-157. http://geodesic.mathdoc.fr/item/DM_2017_29_4_a9/

[1] Kolchin V. F., Random mappings, Optimization Software Inc. Publications Division, New York, 1986, 207 pp. | MR | MR | Zbl

[2] Bender E.A., “Asymptotic methods in enumeration”, SIAM Review, 18:4 (1974), 485–515 | DOI | MR

[3] Goncharov V., “On the field of combinatorial analysis”, Amer. Math. Soc. Transl., 19:2 (1962), 1–46 | MR | Zbl | Zbl

[4] Timashev A.N., Raspredeleniya tipa stepennogo ryada i obobschennaya skhema razmescheniya, Izd. dom «Akademiya», M., 2016

[5] Kolchin V. F., “On the number of permutations with constraints on their cycle lengths”, Discrete Math. Appl., 1:2 (1991), 179–193 | DOI | MR | Zbl

[6] Pavlov A. I., “On the number of substitutions with cycle lengths from a given set”, Theory Probab. Appl., 31:3 (1987), 545–546 | DOI | MR

[7] Pavlov A. I., “On the number of substitutions with cycle lengths from a given set”, Discrete Math. Appl., 2:4 (1992), 445–459 | DOI | MR | Zbl

[8] Pavlov Yu. L., “andom mappings with constraints on the number of cycles”, Proc. Steklov Inst. Math., 177, 1988, 131–142 | MR | Zbl | Zbl

[9] Timashev A. N., “Limit theorems for allocation of particles over different cells with restrictions to the size of the cells”, Theory Probab. Appl., 49:4 (2005), 659–670 | DOI | DOI | MR | Zbl

[10] A. L. Yakymiv, “On the number of $A$-permutations”, Math. USSR-Sb., 66:1 (1990), 301–311 | DOI | MR | Zbl

[11] Yakymiv A. L., “Substitutions with cycle lengths from a fixed set”, Discrete Math. Appl., 1:1 (1991), 105–116 | DOI | MR | Zbl

[12] Yakymiv A. L., “Some classes of substitutions with cycle lengths from a given set”, Discrete Math. Appl., 3:2 (1993), 213–220 | DOI | MR | Zbl

[13] Yakimiv A. L., “Probabilistic applications of Tauberian theorems”, Modern Probability and Statistics, VSP, Leiden, 2005, 225 pp. | MR | Zbl

[14] Renyi A., “Some remarks on the theory of trees”, Magyar. tud. Akad. Mat. Kutató Int. közl., 4:7 (1959), 73–83 | MR

[15] Timashev A. N., Asimptoticheskie razlozheniya v veroyatnostnoi kombinatorike, TVP, M., 2011, 312 pp.

[16] Kolchin V. F., Random Graphs, Cambridge University Press, 1998, 268 pp. | MR | MR

[17] Graham R. L., Knuth D. E., Patashnik O., Concrete Mathematics, Addison-Wesley, 1994, 656 pp. | MR | Zbl