On the number of integer points in a multidimensional domain
Diskretnaya Matematika, Tome 29 (2017) no. 4, pp. 106-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide a new upper estimate for the modulus of the difference $|\Lambda\cap {\cal S}|-{\rm vol }_n({\cal S})/{\rm det }\,\Lambda$, where ${\cal S}\subset \mathbb R^n$ is a set of volume ${\rm vol }_n({\cal S})$ and $\Lambda\subset \mathbb R^n$ is a complete lattice with determinant ${\rm det }\,\Lambda$. This result has an important practical application, for example, in estimating the number of integer solutions of an arbitrary system of linear and nonlinear inequalities.
Keywords: integer lattice, number of integer points, Gaussian volume heuristic.
@article{DM_2017_29_4_a6,
     author = {A. S. Rybakov},
     title = {On the number of integer points in a multidimensional domain},
     journal = {Diskretnaya Matematika},
     pages = {106--120},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_4_a6/}
}
TY  - JOUR
AU  - A. S. Rybakov
TI  - On the number of integer points in a multidimensional domain
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 106
EP  - 120
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_4_a6/
LA  - ru
ID  - DM_2017_29_4_a6
ER  - 
%0 Journal Article
%A A. S. Rybakov
%T On the number of integer points in a multidimensional domain
%J Diskretnaya Matematika
%D 2017
%P 106-120
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_4_a6/
%G ru
%F DM_2017_29_4_a6
A. S. Rybakov. On the number of integer points in a multidimensional domain. Diskretnaya Matematika, Tome 29 (2017) no. 4, pp. 106-120. http://geodesic.mathdoc.fr/item/DM_2017_29_4_a6/

[1] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, Izd. in. lit., M., 1961, 213 pp. ; Cassels J.W.S., An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, no. 45, Cambridge University Press, 1957, 166 pp. | MR | MR | Zbl

[2] Kassels Dzh.V.S., Vvedenie v geometriyu chisel, Mir, M., 1965, 422 pp. ; Cassels J.W.S., An Introduction to the Geometry of Numbers, Springer-Verlag, 1959 | MR | MR | Zbl

[3] Leichtweiss K., Konvexe Mengen, Springer, Berlin, 1980 | MR | MR | Zbl

[4] Feldman N.I., Sedmaya problema Gilberta, Nauka, M., 1982, 311 pp. | MR

[5] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v 3 tomakh, FIZMATLIT, M., 1962

[6] Shafarevich I.R., Remizov A.O., Lineinaya algebra i geometriya, FIZMATLIT, M., 2009, 512 pp.; Shafarevich I. R., Remizov A. O., Linear Algebra and Geometry, Heidelberg, Germany, 2013, 526 pp. | MR

[7] Davenport H., “On a principle of Lipschitz”, J. London Math. Soc., 26 (1951), 179–183 | DOI | MR | Zbl

[8] Gao X., On Northcott's theorem, Ph. D. thesis, University of Colorado, 1995 | MR

[9] Henk M., Wills J. M., “A Blichfeldt-type inequality for the surface area”, Monatsh. Math., 154 (2008), 135–144 | DOI | MR | Zbl

[10] John F., “Extremum problems with inequalities as subsidiary conditions”, Studies and essays presented to R. Courant on his 60th Birthday, Interscience Publishers, Inc., New York, 1948, 187–204 | MR

[11] Lagarias J.C., Lenstra H.W., Schnorr C.P., “Korkine–Zolotareff bases and successive minima of a lattice and its reciprocial lattice”, 07718-86, Tech. Rept. Math. Sci. Res. Inst., Berkley, 1986, 122–146

[12] Lenstra H.W.(Jr), “Integer programming with a fixed number of variables”, Math. Oper. Res., 8:4 (1983), 538–548 | DOI | MR | Zbl

[13] Meyer M., Pajor A., “Sections of the unit ball of $l_p^n$”, J. Func. Anal., 80 (1988), 109–123 | DOI | MR | Zbl

[14] Schmidt W.M., “Northcott's theorem on heights II. The quadratic case”, Acta Arith., 70 (1995), 343–375 | DOI | MR | Zbl

[15] Widmer M., “Counting primitive points of bounded height”, Trans. Amer. Math. Soc., 362:9 (2010), 4793–4829 | DOI | MR | Zbl

[16] Widmer M., “Lipschitz class, narrow class, and counting lattice points”, Proc. Amer. Math. Soc., 140:2 (2012), 677–689 | DOI | MR | Zbl