A criterion of perfect balance for shift-composition of functions over a finite alphabet
Diskretnaya Matematika, Tome 29 (2017) no. 4, pp. 59-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a criterion of perfect balance for sliding superposition of functions over an arbitrary finite alphabet. We also give examples of applying this result to the construction of perfectly balanced functions that are not permutations with respect to the first and to the last variable.
Keywords: functions over a finite alphabet, sliding superposition, perfectly balanced function, function with zero defect, permutability of a function with respect to a variable.
@article{DM_2017_29_4_a3,
     author = {O. A. Logachev},
     title = {A criterion of perfect balance for shift-composition of functions over a finite alphabet},
     journal = {Diskretnaya Matematika},
     pages = {59--65},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_4_a3/}
}
TY  - JOUR
AU  - O. A. Logachev
TI  - A criterion of perfect balance for shift-composition of functions over a finite alphabet
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 59
EP  - 65
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_4_a3/
LA  - ru
ID  - DM_2017_29_4_a3
ER  - 
%0 Journal Article
%A O. A. Logachev
%T A criterion of perfect balance for shift-composition of functions over a finite alphabet
%J Diskretnaya Matematika
%D 2017
%P 59-65
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_4_a3/
%G ru
%F DM_2017_29_4_a3
O. A. Logachev. A criterion of perfect balance for shift-composition of functions over a finite alphabet. Diskretnaya Matematika, Tome 29 (2017) no. 4, pp. 59-65. http://geodesic.mathdoc.fr/item/DM_2017_29_4_a3/

[1] Sumarokov S. N., “Zaprety dvoichnykh funktsii i obratimost dlya odnogo klassa kodiruyuschikh ustroistv.”, Obozr. prikl. i prom. matem., 1 (1994), 33–55 | Zbl

[2] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, Lenand, Moskva, 2015, 576 pp. | MR

[3] Logachev O. A., On perfectly balanced Boolean functions http://eprint.iacr.org/2007/022

[4] Solodovnikov V. I., “Gomomorfizmy registrov sdviga v lineinye avtomaty”, Trudy po diskretnoi matematike, v. 10, 2007, 287–300