Keywords: period, finite commutative uniserial ring.
@article{DM_2017_29_4_a2,
author = {O. A. Kozlitin},
title = {Estimate of the maximal cycle length in the graph of polynomial transformation of {Galois{\textendash}Eisenstein} ring},
journal = {Diskretnaya Matematika},
pages = {41--58},
year = {2017},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2017_29_4_a2/}
}
O. A. Kozlitin. Estimate of the maximal cycle length in the graph of polynomial transformation of Galois–Eisenstein ring. Diskretnaya Matematika, Tome 29 (2017) no. 4, pp. 41-58. http://geodesic.mathdoc.fr/item/DM_2017_29_4_a2/
[1] Viktorenkov V.E., “O stroenii orgrafov polinomialnykh preobrazovanii nad konechnymi kommutativnymi koltsami s edinitsei”, Diskretnaya matematika, 29:3 (2017), 3–23 | DOI
[2] Glukhov M.M., Elizarov V.P., Nechaev A.A., Algebra, Uchebnik, 2-e izd., ispr. i dop., Lan, SPb., 2015, 608 pp.
[3] Elizarov V.P., Konechnye koltsa, Gelios – ARV, M., 2006, 304 pp.
[4] Ermilov D.M., Kozlitin O.A., “Tsiklovaya struktura polinomialnogo generatora nad koltsom Galua”, Matematicheskie voprosy kriptografii, 4:1 (2013), 27–57
[5] Ermilov D.M., Kozlitin O.A., “O stroenii grafa polinomialnogo preobrazovaniya koltsa Galua”, Matematicheskie voprosy kriptografii, 6:3 (2015), 47–73 | MR
[6] Larin M. V., “Transitive polynomial transformations of residue class rings”, Discrete Math. Appl., 12:2 (2002), 127–140 | DOI | DOI | MR | Zbl
[7] Nechaev A. A., “On the structure of finite commutative rings with an identity”, Math. Notes, 10:6 (1971), 840–845 | DOI | MR | Zbl
[8] Nechaev A. A., “Finite principal ideal rings”, Math. USSR-Sb., 20:3 (1973), 364–382 | DOI | MR | Zbl
[9] Slovar kriptograficheskikh terminov, eds. Pod red. B.A. Pogorelova i V.N. Sachkova, MTsNMO, M., 2006, 92 pp.
[10] Anashin V.S., “Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers”, J. Math. Sciences, 89:4 (1998), 1355–1390 | DOI | MR | Zbl