Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2017_29_4_a1, author = {V. I. Afanasyev}, title = {Convergence to the local time of {Brownian} meander}, journal = {Diskretnaya Matematika}, pages = {28--40}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2017_29_4_a1/} }
V. I. Afanasyev. Convergence to the local time of Brownian meander. Diskretnaya Matematika, Tome 29 (2017) no. 4, pp. 28-40. http://geodesic.mathdoc.fr/item/DM_2017_29_4_a1/
[1] Billingsley P., Convergence of Probability Measures, New York: John Wiley Sons, 1968 | MR | MR | Zbl
[2] Borodin A. N., “Brownian local time”, Russian Math. Surveys, 44:2 (1989), 1–51 | DOI | MR | Zbl
[3] Borodin A. N., “On the asymptotic behavior of local times of recurrent random walks with finite variance”, Theory Probab. Appl., 26:4 (1982), 758–772 | DOI | MR | Zbl | Zbl
[4] Bulinskiy A.V., Shashkin A.P., “Limit theorems for associated random fields and related systems”, Adv. Ser. Statist. Sci. Appl. Probab., 10 (2007), World Scientific Publ., Singapore, 448 pp. | DOI | MR
[5] Iglehart D.L., “On a functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 2:4 (1974), 608–619 | DOI | MR | Zbl
[6] Bolthausen E., “Functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 4:3 (1976), 480–485 | DOI | MR | Zbl
[7] Takacs L., “Limit distributions for the Bernoulli meander”, J. Appl. Probab., 32:2 (1995), 375–395 | DOI | MR | Zbl
[8] Takacs L., “Brownian local times”, J. Appl. Math. Stoch. Anal., 8:3 (1995), 209–232 | DOI | MR | Zbl
[9] Csaki E., Mohanty S.G., “Some joint distributions for conditional random walks”, Canad. J. Statist., 14:1 (1986), 19–28 | DOI | MR | Zbl