Convergence to the local time of Brownian meander
Diskretnaya Matematika, Tome 29 (2017) no. 4, pp. 28-40

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\left\{ S_{n},\;n\geq 0\right\}$ be integer-valued random walk with zero drift and variance $\sigma^2$. Let $\xi(k,n)$ be number of $t\in\{1,\ldots,n\}$ such that $S(t)=k$. For the sequence of random processes $\xi(\lfloor u\sigma \sqrt{n}\rfloor,n)$ considered under conditions $S_{1}>0,\ldots ,S_{n}>0$ a functional limit theorem on the convergence to the local time of Brownian meander is proved.
Keywords: Brownian meander, local time of Brownian meander, sojourn time of random walk, functional limit theorems.
@article{DM_2017_29_4_a1,
     author = {V. I. Afanasyev},
     title = {Convergence to the local time of {Brownian} meander},
     journal = {Diskretnaya Matematika},
     pages = {28--40},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_4_a1/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Convergence to the local time of Brownian meander
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 28
EP  - 40
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_4_a1/
LA  - ru
ID  - DM_2017_29_4_a1
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Convergence to the local time of Brownian meander
%J Diskretnaya Matematika
%D 2017
%P 28-40
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_4_a1/
%G ru
%F DM_2017_29_4_a1
V. I. Afanasyev. Convergence to the local time of Brownian meander. Diskretnaya Matematika, Tome 29 (2017) no. 4, pp. 28-40. http://geodesic.mathdoc.fr/item/DM_2017_29_4_a1/