Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors
Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 133-143

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is related to the average estimates of numerical functions $\Omega(k; n)$ and $\omega(k; n)$ connected with the number of prime divisors of $n$ with limited multiplicity.
Keywords: functions of prime divisors, divisor multiplicity, fractional part, density theorem.
@article{DM_2017_29_3_a9,
     author = {A. V. Shubin},
     title = {Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors},
     journal = {Diskretnaya Matematika},
     pages = {133--143},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/}
}
TY  - JOUR
AU  - A. V. Shubin
TI  - Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 133
EP  - 143
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/
LA  - ru
ID  - DM_2017_29_3_a9
ER  - 
%0 Journal Article
%A A. V. Shubin
%T Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors
%J Diskretnaya Matematika
%D 2017
%P 133-143
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/
%G ru
%F DM_2017_29_3_a9
A. V. Shubin. Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 133-143. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/