Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors
Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 133-143
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is related to the average estimates of numerical functions $\Omega(k; n)$ and $\omega(k; n)$ connected with the number of prime divisors of $n$ with limited multiplicity.
Keywords:
functions of prime divisors, divisor multiplicity, fractional part, density theorem.
@article{DM_2017_29_3_a9,
author = {A. V. Shubin},
title = {Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors},
journal = {Diskretnaya Matematika},
pages = {133--143},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/}
}
TY - JOUR AU - A. V. Shubin TI - Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors JO - Diskretnaya Matematika PY - 2017 SP - 133 EP - 143 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/ LA - ru ID - DM_2017_29_3_a9 ER -
A. V. Shubin. Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 133-143. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/