Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors
Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 133-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is related to the average estimates of numerical functions $\Omega(k; n)$ and $\omega(k; n)$ connected with the number of prime divisors of $n$ with limited multiplicity.
Keywords: functions of prime divisors, divisor multiplicity, fractional part, density theorem.
@article{DM_2017_29_3_a9,
     author = {A. V. Shubin},
     title = {Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors},
     journal = {Diskretnaya Matematika},
     pages = {133--143},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/}
}
TY  - JOUR
AU  - A. V. Shubin
TI  - Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 133
EP  - 143
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/
LA  - ru
ID  - DM_2017_29_3_a9
ER  - 
%0 Journal Article
%A A. V. Shubin
%T Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors
%J Diskretnaya Matematika
%D 2017
%P 133-143
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/
%G ru
%F DM_2017_29_3_a9
A. V. Shubin. Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 133-143. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/

[1] Fedorov G.V., “O kolichestve prostykh delitelei tselogo chisla s ogranicheniem kratnosti”, Izv. Sarat. un-ta Novaya seriya. Ser. Matem. Mekh. Inform., 13:4 (2013), 129–133 | Zbl

[2] Naslund E., “The median largest prime factor”, J. Number Theory, 141 (2014), 109–118 | DOI | MR | Zbl

[3] Shubin A. V., “Drobnye doli funktsii $x/n$”, Matem. zametki, 100:5 (2016), 744–756 | DOI | MR | Zbl

[4] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka, M., 1983, 240 pp. | MR

[5] Gritsenko S. A., “O plotnostnoi teoreme”, Teoriya chisel i analiz, Trudy MIAN, 207, 70–81 ; Gritsenko S. A., “On a density theorem”, Proc. Steklov Inst. Math., 207 (1995), 67–76 | MR | Zbl

[6] Karatsuba A. A., Voronin S. M., The Riemann zeta-function, v. 5, Walter de Gruyter, 1992, 396 pp. | MR

[7] Prachar K., Primzahlverteilung, Berlin G | MR | MR