Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2017_29_3_a9, author = {A. V. Shubin}, title = {Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors}, journal = {Diskretnaya Matematika}, pages = {133--143}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/} }
TY - JOUR AU - A. V. Shubin TI - Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors JO - Diskretnaya Matematika PY - 2017 SP - 133 EP - 143 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/ LA - ru ID - DM_2017_29_3_a9 ER -
A. V. Shubin. Asymptotic behavior of functions$\Omega(k; n)$ and $\omega(k; n)$ relatedto the number of prime divisors. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 133-143. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a9/
[1] Fedorov G.V., “O kolichestve prostykh delitelei tselogo chisla s ogranicheniem kratnosti”, Izv. Sarat. un-ta Novaya seriya. Ser. Matem. Mekh. Inform., 13:4 (2013), 129–133 | Zbl
[2] Naslund E., “The median largest prime factor”, J. Number Theory, 141 (2014), 109–118 | DOI | MR | Zbl
[3] Shubin A. V., “Drobnye doli funktsii $x/n$”, Matem. zametki, 100:5 (2016), 744–756 | DOI | MR | Zbl
[4] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka, M., 1983, 240 pp. | MR
[5] Gritsenko S. A., “O plotnostnoi teoreme”, Teoriya chisel i analiz, Trudy MIAN, 207, 70–81 ; Gritsenko S. A., “On a density theorem”, Proc. Steklov Inst. Math., 207 (1995), 67–76 | MR | Zbl
[6] Karatsuba A. A., Voronin S. M., The Riemann zeta-function, v. 5, Walter de Gruyter, 1992, 396 pp. | MR