Arithmetical rings and Krull dimension
Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 126-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a commutative arithmetical ring. It is proved that the ring $A$ has Krull dimension if and only if every factor ring of $A$ is finite-dimensional and does not have idempotent proper essential ideals.
Keywords: arithmetical ring, Krull dimension, idempotent ideal.
@article{DM_2017_29_3_a8,
     author = {A. A. Tuganbaev},
     title = {Arithmetical rings and {Krull} dimension},
     journal = {Diskretnaya Matematika},
     pages = {126--132},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a8/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Arithmetical rings and Krull dimension
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 126
EP  - 132
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_3_a8/
LA  - ru
ID  - DM_2017_29_3_a8
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Arithmetical rings and Krull dimension
%J Diskretnaya Matematika
%D 2017
%P 126-132
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_3_a8/
%G ru
%F DM_2017_29_3_a8
A. A. Tuganbaev. Arithmetical rings and Krull dimension. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 126-132. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a8/

[1] Camillo V., “Distributive modules”, J. Algebra, 36 (1975), 16–25 | DOI | MR | Zbl

[2] Gordon R., Robson J.C., “Krull dimension”, Mem. Amer. Math. Soc., 1973, no. 133, 1–78 | MR

[3] Lemonnier B., “Sur les anneaux qui ont une déviation”, C. R. Acad. Sc. Paris. Ser. A., 275 (1972), A357-A359.

[4] Lemonnier B., “Dimension de Krull et codéviation des anneaux semi-héréditaires”, C. R. Acad. Sc. Paris. Ser. A, 284 (1977), A663-A666 | MR

[5] Stephenson W., “Modules whose lattice of submodules is distributive”, Proc. London Math. Soc., 28:2 (1974), 291–310 | DOI | MR | Zbl

[6] Tuganbaev A. A., “Structure of distributive rings”, Sb. Math., 193:5 (2002), 745–760 | DOI | DOI | MR | Zbl

[7] Tuganbaev A. A., “Rings whose finitely generated right ideals are quasi-projective”, Discrete Math. Appl., 25:4 (2015), 245–251 | DOI | DOI | MR | Zbl