A method of graph reduction and its applications
Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 114-125

Voir la notice de l'article provenant de la source Math-Net.Ru

The independent set problem for a given simple graph is to determine the size of a maximum set of its pairwise non-adjacent vertices. We propose a new way of graph reduction leading to a new proof of the NP-completeness of the independent set problem in the class of planar graphs and to the proof of NP-completeness of this problem in the class of planar graphs having only triangular internal facets of maximal vertex degree 18.
Keywords: independent sets, planar graph, planar triangulation, computational complexity.
@article{DM_2017_29_3_a7,
     author = {D. V. sirotkin and D. S. Malyshev},
     title = {A method of graph reduction and its applications},
     journal = {Diskretnaya Matematika},
     pages = {114--125},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a7/}
}
TY  - JOUR
AU  - D. V. sirotkin
AU  - D. S. Malyshev
TI  - A method of graph reduction and its applications
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 114
EP  - 125
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_3_a7/
LA  - ru
ID  - DM_2017_29_3_a7
ER  - 
%0 Journal Article
%A D. V. sirotkin
%A D. S. Malyshev
%T A method of graph reduction and its applications
%J Diskretnaya Matematika
%D 2017
%P 114-125
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_3_a7/
%G ru
%F DM_2017_29_3_a7
D. V. sirotkin; D. S. Malyshev. A method of graph reduction and its applications. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 114-125. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a7/