Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2017_29_3_a7, author = {D. V. sirotkin and D. S. Malyshev}, title = {A method of graph reduction and its applications}, journal = {Diskretnaya Matematika}, pages = {114--125}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a7/} }
D. V. sirotkin; D. S. Malyshev. A method of graph reduction and its applications. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 114-125. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a7/
[1] Alekseev V.E., “O szhimaemykh grafakh”, Problemy kibernetiki, 36 (1979), 23–31, Iz-vo «Nauka», Moskva
[2] Alekseev V.E., “O vliyanii lokalnykh ogranichenii na slozhnost opredeleniya chisla nezavisimosti grafa”, Kombinatorno-algebraicheskie metody v prikladnoi matematike, 1983, 3–13, Iz-vo Gorkovskogo gos. universiteta, Gorkii
[3] Alekseev V.E., Lozin V.V., “O lokalnykh preobrazovaniyakh grafov, sokhranyayuschikh chislo nezavisimosti”, Diskretnyi analiz i issledovanie operatsii, 5:1 (1998), 3–19 | MR | Zbl
[4] Kobylkin K.S., “Vychislitelnaya slozhnost zadachi vershinnogo pokrytiya v klasse planarnykh triangulyatsii”, Trudy in-ta matem. i mekh. UrO RAN, 22:3 (2016), 153–159 | MR
[5] Alekseev V.E., Malyshev D.S., “Planar graph classes with the independent set problem solvable in polynomial time”, J. Appl. Industr. Math., 3:1 (2008), 1–5 | DOI | MR
[6] Garey M.R., Johnson D.S., Stockmeyer L., “Some simplified NP-complete graph problems”, Theor. Comput. Sci., 1:3 (1976), 237–267 | DOI | MR | Zbl
[7] Hopcroft J., Tarjan R.E., “Efficient planarity testing”, ACM, 21:4 (1974), 549–568 | MR | Zbl
[8] Lozin V.V., Milanic M., “On the maximum independent set problem in subclasses of planar graphs”, J. Graph Algor. Appl., 14:2 (2010), 269–286 | DOI | MR | Zbl
[9] Lozin V.V., Monnot J., Ries B., “On the maximum independent set problem in subclasses of subcubic graphs”, J. Discr. Algor., 31 (2015), 104–112 | DOI | MR | Zbl
[10] Malyshev D.S., “Classes of subcubic planar graphs for which the independent set problem is polynomially solvable”, J. Appl. Industr. Math., 7:4 (2013), 537–548 | DOI | Zbl