A method of graph reduction and its applications
Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 114-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

The independent set problem for a given simple graph is to determine the size of a maximum set of its pairwise non-adjacent vertices. We propose a new way of graph reduction leading to a new proof of the NP-completeness of the independent set problem in the class of planar graphs and to the proof of NP-completeness of this problem in the class of planar graphs having only triangular internal facets of maximal vertex degree 18.
Keywords: independent sets, planar graph, planar triangulation, computational complexity.
@article{DM_2017_29_3_a7,
     author = {D. V. sirotkin and D. S. Malyshev},
     title = {A method of graph reduction and its applications},
     journal = {Diskretnaya Matematika},
     pages = {114--125},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a7/}
}
TY  - JOUR
AU  - D. V. sirotkin
AU  - D. S. Malyshev
TI  - A method of graph reduction and its applications
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 114
EP  - 125
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_3_a7/
LA  - ru
ID  - DM_2017_29_3_a7
ER  - 
%0 Journal Article
%A D. V. sirotkin
%A D. S. Malyshev
%T A method of graph reduction and its applications
%J Diskretnaya Matematika
%D 2017
%P 114-125
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_3_a7/
%G ru
%F DM_2017_29_3_a7
D. V. sirotkin; D. S. Malyshev. A method of graph reduction and its applications. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 114-125. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a7/

[1] Alekseev V.E., “O szhimaemykh grafakh”, Problemy kibernetiki, 36 (1979), 23–31, Iz-vo «Nauka», Moskva

[2] Alekseev V.E., “O vliyanii lokalnykh ogranichenii na slozhnost opredeleniya chisla nezavisimosti grafa”, Kombinatorno-algebraicheskie metody v prikladnoi matematike, 1983, 3–13, Iz-vo Gorkovskogo gos. universiteta, Gorkii

[3] Alekseev V.E., Lozin V.V., “O lokalnykh preobrazovaniyakh grafov, sokhranyayuschikh chislo nezavisimosti”, Diskretnyi analiz i issledovanie operatsii, 5:1 (1998), 3–19 | MR | Zbl

[4] Kobylkin K.S., “Vychislitelnaya slozhnost zadachi vershinnogo pokrytiya v klasse planarnykh triangulyatsii”, Trudy in-ta matem. i mekh. UrO RAN, 22:3 (2016), 153–159 | MR

[5] Alekseev V.E., Malyshev D.S., “Planar graph classes with the independent set problem solvable in polynomial time”, J. Appl. Industr. Math., 3:1 (2008), 1–5 | DOI | MR

[6] Garey M.R., Johnson D.S., Stockmeyer L., “Some simplified NP-complete graph problems”, Theor. Comput. Sci., 1:3 (1976), 237–267 | DOI | MR | Zbl

[7] Hopcroft J., Tarjan R.E., “Efficient planarity testing”, ACM, 21:4 (1974), 549–568 | MR | Zbl

[8] Lozin V.V., Milanic M., “On the maximum independent set problem in subclasses of planar graphs”, J. Graph Algor. Appl., 14:2 (2010), 269–286 | DOI | MR | Zbl

[9] Lozin V.V., Monnot J., Ries B., “On the maximum independent set problem in subclasses of subcubic graphs”, J. Discr. Algor., 31 (2015), 104–112 | DOI | MR | Zbl

[10] Malyshev D.S., “Classes of subcubic planar graphs for which the independent set problem is polynomially solvable”, J. Appl. Industr. Math., 7:4 (2013), 537–548 | DOI | Zbl