Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2017_29_3_a4, author = {D. G. Meshchaninov}, title = {Closed classes of polynomials modulo $p^2$}, journal = {Diskretnaya Matematika}, pages = {54--69}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a4/} }
D. G. Meshchaninov. Closed classes of polynomials modulo $p^2$. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 54-69. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a4/
[1] Yanov Yu. I., Muchnik A. A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46 | Zbl
[2] Post E. L., “The two-valued iterative systems of mathematical logic”, Ann. Math. Stud., 5, Princeton Univ. Press, Princeton–London, 1941 | MR | Zbl
[3] Kempner A. J., “Polynomials and their residue systems”, Trans. Amer. Math. Soc., 22:4 (1921), 240–266 | DOI | MR | Zbl
[4] Redei L., Szele T., “Algebraisch-Zahlentheoretische Betrachtungen über Ringe. II”, Acta Math., 82 (1950), 209–241 | DOI | MR | Zbl
[5] Keller G., Olson F. R., “Counting polynomial functions $\pmod {p^n}$”, Duke Math. J., 35:4 (1968), 835–838 | DOI | MR | Zbl
[6] Aizenberg H. H., Semion I. V., Tsitkin A. I., “Moschnost klassa funktsii $k$-znachnoi logiki ot $n$ peremennykh, predstavimykh polinomami po modulyu $k$”, Mnogoustoichivye elementy i ikh primenenie, Sov. radio, M., 1971, 79–83
[7] Singmaster D., “On polynomial functions $\pmod {m}$”, J. Number Th., 6:5 (1974), 345–352 | DOI | MR | Zbl
[8] Carlitz L., “Functions and polynomials $\pmod {p^n}$”, Acta Arithm., 9 (1964), 66–78 | MR
[9] Aizenberg H. H., Semion I. V., “Nekotorye kriterii predstavimosti funktsii $k$-znachnoi logiki polinomami po modulyu $k$”, Mnogoustoichivye elementy i ikh primenenie, Sov. radio, M., 1971, 84–88
[10] Rosenberg I. G., “Polynomial functions over finite rings”, Glasnik Matematiki, 10:1 (1975), 25–33 | MR | Zbl
[11] Meschaninov D. G., “Nekotorye usloviya predstavimosti funktsii iz $P_k$ polinomami po modulyu $k$”, Dokl. AN SSSR, 299:1 (1988), 50–53
[12] Meshchaninov D. G., “On the second $p$-differences of functions of $p^\alpha$-valued logic”, Discrete Math. Appl., 3:6 (1993), 611–621 | DOI | MR | Zbl
[13] Remizov A. B., “Superstructure of the closed class of polynomials modulo $k$”, Discrete Math. Appl., 1:1 (1991), 9–22 | DOI | MR | Zbl
[14] Meshchaninov D. G., “A method for constructing polynomials of $k$-valued logic functions”, Discrete Math. Appl., 5:4 (1995), 333–346 | DOI | MR | Zbl
[15] Selezneva S. N., “A fast algorithm for the construction of polynomials modulo $k$ for $k$-valued functions for composite $k$”, Discrete Math. Appl., 21:5-6 (2011), 651–674 | DOI | DOI | MR | Zbl
[16] Cherepov A. H., Nadstruktura klassa sokhraneniya otnoshenii sravneniya v $k$-znachnoi logike po vsem modulyam-delitelyam $k$, Avtoref. diss. kand. fiz.-mat. n., M., 1986
[17] Nechaev A. A., “Kriterii polnoty sistem funktsii $p^n$-znachnoi logiki, soderzhaschikh operatsii slozheniya i umnozheniya po modulyu $p^n$”, Metody diskretnogo analiza v reshenii kombinatornykh zadach, 1980, no. 34, 74–89, 4. Novosibirsk
[18] Cherepov A. H., “Opisanie struktury zamknutykh klassov v $P_k$, soderzhaschikh klass polinomov”, Problemy kibernetiki, 1983, no. 40, 5–18 | MR | Zbl
[19] Meshchaninov D. G., “Superstructures of the class of polynomials in $P_k$”, Math. Notes, 44:5 (1988), 950–954 | DOI | MR | Zbl
[20] Gavrilov G. P., “On the superstructure of the class of polynomials in multivalued logics”, Discrete Math. Appl., 6:4 (1996), 405–412 | DOI | DOI | MR | Zbl
[21] Gavrilov G. P., “On the closed classes of multivalued logic containing the polynomial class”, Discrete Math. Appl., 7:3 (1997), 231–242 | DOI | DOI | MR | Zbl
[22] Zaets M. V., “Klassifikatsiya funktsii nad primarnym koltsom vychetov v svyazi s metodom pokoordinatnoi linearizatsii”, Prikl. diskret. matematika. Prilozhenie, 2014, no. 7, 16–19
[23] Zaets M. V., “O klasse variatsionno-koordinatno-polinomialnykh funktsii nad primarnym koltsom vychetov”, Prikl. diskret. matematika, 2014, no. 3(25), 12–27
[24] Krokhin A. A., Safin K. L., Sukhanov E. V., “On the structure of the lattice of closed classes of polynomials”, Discrete Math. Appl., 7:2 (1997), 131–146 | DOI | DOI | MR | Zbl
[25] Salomaa A. A., “On infinetely generated sets of operations in finite algebra”, Ann. Univ. Turku, Ser. A, I, 1964, no. 74, 1–12 | MR
[26] Bagyinszki J., Demetrovics J., “The lattice of linear classes in prime-valued logics”, Discrete mathematics, 1982, no. 7, 105–123, Banach Center Publ., Warsaw | MR
[27] Szendrei Á., “On closed sets of linear operations over a finite sets of square-free cardinality”, Elektr. Inform. Kybern., 1978, no. 14, 547–559 | MR | Zbl
[28] Szendrei Á., “On closed classes of quasilinear functions”, Czechoslov. Math. J., 1980, no. 80, 498–509 | MR | Zbl
[29] Lau D., “Uber abgeschlossenen Mengen linearen Funktionen in mehrvertigen Logiken”, J. Inf. Proccess. Cybern. EIK, 24:7/8 (1988), 367–381 | MR | Zbl
[30] Lau D., B. Schröder, “On the number of closed subsets of linear functions in 6-valued logic”, Beiträge zur Alg. und Geom., 1990, no. 31, 19–32 | MR
[31] Lau D., “Kongruenzen auf abgeschlossenen Mengen linearen Funktionen in mehrvertigen Logiken”, Rostock Math. Kolloq., 1990, no. 43, 3–16 | MR
[32] Bulatov A. A., “Polynomial reducts of modules, I. Rough classification”, Mult.-Valued Log., 33:2 (1998), 135–154
[33] Lau D., Function algebras on finite sets, Springer-Verlag, 2006, 668 pp. | MR | Zbl
[34] Semigrodskikh A. P., Sukhanov E. B., “On closed classes of polynomials over finite fields”, Discrete Math. Appl., 7:6 (1997), 593–606 | DOI | DOI | MR | Zbl
[35] Darsaliya V. Sh., “Usloviya polnoty dlya polinomov s naturalnymi, tselymi i ratsionalnymi koeffitsientami”, Fund. i prikl. matem., 2:2 (1996), 365–374 | MR | Zbl
[36] Mamontov A. I., “Issledovanie struktury zamknutykh klassov v funktsionalnoi sisteme lineinykh polinomov s tselymi neotritsatelnymi koeffitsientami”, Vestnik MEI, 6 (2006), 83–90
[37] Mamontov A. I., Meshchaninov D. G., “The completeness problem in the function algebra of linear integer-coefficient polynomials”, Discrete Math. Appl., 20:5-6 (2010), 621–641 | DOI | DOI | MR | Zbl
[38] Mamontov A. I., “Problema otnositelnoi polnoty v funktsionalnoi sisteme lineinykh polinomov s ratsionalnymi koeffitsientami”, Vestnik MEI, 2011, no. 6, 133–142
[39] Meschaninov D. G., Nikitin I. V., “Funktsionalno zamknutye klassy polinomov, sokhranyayuschikh nekotorye ekvivalentnosti na chislovykh mnozhestvakh”, Vestnik MEI, 2011, no. 6, 14–23
[40] Meschaninov D. G., Nikitin I. V., “Klassy sokhraneniya porogovykh razbienii v funktsionalnykh sistemakh polinomov”, Vestnik MEI, 2012, no. 6, 132–141
[41] Aleksiadis N. F., “Funktsionalnaya sistema polinomov s naturalnymi koeffitsientami”, Vestnik MEI, 2013, no. 6, 125–140
[42] Meschaninov D. G., Nikitin I. V., “Klassy polinomov, sokhranyayuschikh razbieniya oblasti opredeleniya na promezhutki ravnoi dliny”, Vestnik MEI, 2013, no. 6, 147–153
[43] Mamontov A. I., Meshchaninov D. G., “The algorithm for completeness recognizing in function algebra $L(\mathbb Z)$”, Discrete Math. Appl., 24:1 (2014), 21–28 | DOI | DOI | MR | Zbl
[44] Meschaninov D. G., Nikitin I. V., “Klassy polinomov, sokhranyayuschikh obobschennye tochechnye razbieniya beskonechnoi oblasti opredeleniya”, Mezhdunar. nauchno-issled. zhurnal, 9:3(40) (2015), 75–79
[45] Meschaninov D. G., “O pervykh $d$-raznostyakh funktsii $k$-znachnoi logiki”, Matem. voprosy kibernetiki, 1998, no. 7, 265–280
[46] Meschaninov D. G., “O zamknutykh klassakh $k$-znachnykh funktsii, sokhranyayuschikh pervye $d$-raznosti”, Matem. voprosy kibernetiki, 1999, no. 8, 219–230
[47] Meschaninov D. G., “O zamknutykh klassakh polinomov nad koltsom $Z_k$”, Trudy IX Mezhdunar. konf. "Diskretnye modeli v teorii upravlyayuschikh sistem" (20–22 maya 2015 g.), MAKS-Press, M., 2015, 161–163