Closed classes of polynomials modulo $p^2$
Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 54-69

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider functions of $p^2$-valued logic ($p$ is prime) that may be implemented by polynomials over the ring ${\mathbb Z}_{p^2}$, and describe all closed classes that contain linear functions. It turns out that the set of these classes is countable. We also construct the lattice of such classes with respect to inclusion.
Keywords: $k$-valued logic, closed class, clone, polynomials over a ring of residues, lattice of closed classes.
@article{DM_2017_29_3_a4,
     author = {D. G. Meshchaninov},
     title = {Closed classes of polynomials modulo $p^2$},
     journal = {Diskretnaya Matematika},
     pages = {54--69},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a4/}
}
TY  - JOUR
AU  - D. G. Meshchaninov
TI  - Closed classes of polynomials modulo $p^2$
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 54
EP  - 69
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_3_a4/
LA  - ru
ID  - DM_2017_29_3_a4
ER  - 
%0 Journal Article
%A D. G. Meshchaninov
%T Closed classes of polynomials modulo $p^2$
%J Diskretnaya Matematika
%D 2017
%P 54-69
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_3_a4/
%G ru
%F DM_2017_29_3_a4
D. G. Meshchaninov. Closed classes of polynomials modulo $p^2$. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 54-69. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a4/