Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2017_29_3_a1, author = {A. V. Volgin}, title = {The square root law in the embedding detection problem for {Markov} chains with unknown matrix of transition {probabilities\footnote{The} paper is published by the recommendation of the {Program} {Commitee} of the {CTCrypt'2016} {Conference.}}}, journal = {Diskretnaya Matematika}, pages = {24--37}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2017_29_3_a1/} }
TY - JOUR AU - A. V. Volgin TI - The square root law in the embedding detection problem for Markov chains with unknown matrix of transition probabilities\footnote{The paper is published by the recommendation of the Program Commitee of the CTCrypt'2016 Conference.} JO - Diskretnaya Matematika PY - 2017 SP - 24 EP - 37 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2017_29_3_a1/ LA - ru ID - DM_2017_29_3_a1 ER -
%0 Journal Article %A A. V. Volgin %T The square root law in the embedding detection problem for Markov chains with unknown matrix of transition probabilities\footnote{The paper is published by the recommendation of the Program Commitee of the CTCrypt'2016 Conference.} %J Diskretnaya Matematika %D 2017 %P 24-37 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2017_29_3_a1/ %G ru %F DM_2017_29_3_a1
A. V. Volgin. The square root law in the embedding detection problem for Markov chains with unknown matrix of transition probabilities\footnote{The paper is published by the recommendation of the Program Commitee of the CTCrypt'2016 Conference.}. Diskretnaya Matematika, Tome 29 (2017) no. 3, pp. 24-37. http://geodesic.mathdoc.fr/item/DM_2017_29_3_a1/
[1] Borovkov A. A., Probability Theory, Gordon Breach, New York, 1998, 474 pp. | MR | Zbl
[2] Ivanov V. A., “Modeli vkraplenii v odnorodnye sluchainye posledovatelnosti”, Trudy po diskretnoi matematike, 11 (2008), 18–34
[3] Ivchenko G.I., Medvedev Yu.I., Vvedenie v matematicheskuyu statistiku, LKI, Moskva, 2010, 600 pp.
[4] Cramer H., Mathematical Methods of Statistics, Prinseton University Press, 1962, 590 pp. | MR | MR
[5] Ponomarev K. I., “A parametric model of embedding and its statistical analysis”, Discrete Math. Appl., 19:6 (2009), 587–596 | DOI | DOI | MR | Zbl
[6] Kharin Yu. S., Vecherko E. V., “Statistical estimation of parameters for binary Markov chain models with embeddings”, Discrete Math. Appl., 23:2 (2013), 153–169 | DOI | DOI | MR | Zbl
[7] Kharin Yu. S., Vecherko E. V., “Detection of embeddings in binary Markov chains”, Discrete Math. Appl., 26:1 (2016), 13–29 | DOI | DOI | MR | MR | Zbl
[8] Shoitov A. M., “O vyyavlenii fakta zashumleniya konechnoi tsepi Markova s neizvestnoi matritsei perekhodnykh veroyatnostei”, Prikladnaya diskretnaya matematika. Prilozhenie, 3 (2010), 44–45
[9] Filler T., Ker A.D., Fridrich J., “The square root law of steganographic capacity for Markov covers”, Proc. SPIE, 7254 (2009), 31–47
[10] Ker A.D., “A capacity result for batch steganography”, IEEE Signal Processing Letters, 14(8) (2007), 525–528 | DOI
[11] Sharp T., “An implementation of key-based digital signal steganography”, Proc. Information Hiding Workshop, 2137 (2001), 13–26 | DOI | Zbl